When Integrals Approximate One

In the following problems, let f be a function that is continuous on \mathbb R.

Problem 1. Given that \displaystyle \lim_{x \to \infty} \frac{1}{x} \int_0^x f(t)\, \mathrm dt = 1, prove that \displaystyle \lim_{x \to \infty} f(x) = 1 if the limit exists.

(Click for Solution)

Solution. We first claim that \displaystyle \int_0^x f(t)\, \mathrm dt \to \infty. Fix M > 0. By hypothesis, for any \epsilon > 0, there exists K > 0 such that x > K implies

\displaystyle \left|\frac{1}{x} \int_0^x f(t)\, \mathrm dt - 1\right| < \epsilon \quad \Rightarrow \quad \int_0^x f(t)\, \mathrm dt > (1 - \epsilon)x.

Setting \epsilon = 1/2, choose N := \max\{K, 2M\} so that x > N implies

\displaystyle \int_0^x f(t)\, \mathrm dt > (1-1/2) \cdot 2M = M.

Therefore \displaystyle \int_0^x f(t)\, \mathrm dt \to \infty. By L’Hôpital’s rule and the fundamental theorem of calculus,

\displaystyle \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\frac{\mathrm d}{\mathrm dx} \int_0^x f(t)\, \mathrm dt}{\frac{\mathrm d}{\mathrm dx} (x)} = \lim_{x \to \infty} \frac{\int_0^x f(t)\, \mathrm dt}{x} = 1.

But what if we don’t know that the limit exists? The added feature of f being increasing helps.

Problem 2. Given that \displaystyle \lim_{x \to \infty} \frac{1}{x} \int_0^x f(t)\, \mathrm dt = 1, prove that \displaystyle \lim_{x \to \infty} f(x) = 1 if f is increasing.

(Click for Solution)

Solution. Fix \epsilon > 0. By the given condition, for any k > 0 to be chosen, there exists K > 0 such that for x > K,

\displaystyle -k \epsilon < \frac{1}{x} \int_0^x f(t)\, \mathrm dt - 1 < k \epsilon.

We claim that f(x) \leq 1 for any x. Suppose f(N) > 1 for some N. Define \epsilon_0 := (f(N)-1)/2 so that for x > N, f(x) \geq f(N) > 1 + \epsilon_0. Then

\displaystyle \begin{aligned} \frac{1}{x} \int_0^x f(t)\, \mathrm dt &= \frac{1}{x} \int_0^N f(t)\, \mathrm dt + \frac{1}{x} \int_N^x f(t)\, \mathrm dt \\ &\geq \frac{1}{x} \int_0^N f(t)\, \mathrm dt + (1+\epsilon_0) (1-N/x) \\ &\geq \frac{N}{x} \cdot (f(0) - (1+\epsilon_0)) + (1+\epsilon_0) . \end{aligned}

Taking x \to \infty yields

\displaystyle 1 = \lim_{x \to \infty} \frac{1}{x} \int_0^x f(t)\, \mathrm dt \geq 0 \cdot (f(0) - (1+\epsilon_0)) + (1+\epsilon_0) > 1,

a contradiction. Therefore, f(x) \leq 1 for any x. On the other hand, apply the mean value theorem and the fundamental theorem of calculus to find c \in (0, x) such that

\displaystyle f(c) = \frac{1}{x} \int_0^x f(t)\, \mathrm dt > 1 - k\epsilon.

Setting k = 1 and using the fact that f is increasing,

1 - \epsilon < f(c) \leq f(x) \leq 1 < 1 +\epsilon\quad \Rightarrow \quad |f(x) - 1| < \epsilon.

It turns out that we can we relax our hypothesis. However, this will require more rudimentary ideas.

Problem 3. Given that \displaystyle \lim_{x \to \infty} \frac{1}{x} \int_0^x f(t)\, \mathrm dt = 1, prove that \displaystyle \lim_{x \to \infty} f(x) = 1.

(Click for Solution)

Solution. Fix \epsilon > 0. By the given condition, for any k > 0 to be chosen, there exists K > 0 such that for x > K,

\displaystyle -k \epsilon < \frac{1}{x} \int_0^x f(t)\, \mathrm dt - 1 < k \epsilon.

By algebra, since x > K > 0,

\displaystyle -k \epsilon x < \int_0^x f(t)\, \mathrm dt - x < k \epsilon x.

In particular, the inequality holds replacing x with x+h for |h| < (x-K)/2 so that

\displaystyle -k \epsilon (x+h) < \int_0^{x+h} f(t)\, \mathrm dt - (x+h) < k \epsilon (x+h).

Subtracting the inequalities then dividing by h,

\displaystyle -k \epsilon < \frac 1h \int_x^{x+h} f(t)\, \mathrm dt - 1 < k \epsilon.

Taking h \to 0 and applying the fundamental theorem of calculus,

\displaystyle -k \epsilon \leq f(x)-1 \leq k \epsilon.

Setting k = 1/2,

\displaystyle -\epsilon < -k \epsilon \leq f(x)-1 \leq k \epsilon < \epsilon\quad \Rightarrow \quad |f(x) - 1| < \epsilon.

By the \epsilonK definition for limits, \displaystyle \lim_{x \to \infty} f(x) = 1.

—Joel Kindiak, 26 Nov 24, 0110H


Leave a comment