Composing Integrability

In this question, we compose certain functions to preserve integrability.

Problem 1. Let f : [a, b] \to \mathbb R be an integrable function, and suppose m \leq f \leq M. Let \phi : [m, M] \to \mathbb R be continuous. Prove that \phi \circ f is integrable.

Solution. Fix \epsilon > 0. Since \phi is continuous, it is uniformly continuous. Thus, for any k_1 > 0, there exists \delta > 0 such that for any u,v \in [m,M],

|u-v| < \delta \quad \Rightarrow \quad |\phi(u) - \phi(v)| < k_1 \cdot \epsilon.

Since f is integrable, for any k_2 > 0, there exists a partition P \subseteq [a, b] such that

\displaystyle \sum_{i = 1}^{|P|} (M_i(f,P) - m_i(f,P))\Delta x_i = U(f, P) - L(f, P) < k_2 \cdot \epsilon.

We need to treat the values m_i(f,P), M_i(f, P) as inputs to \phi. We observe that if M_i(f,P) - m_i(f,P) < \delta, then for any u,v \in [m_i(f, P), M_i(f, P)], the continuity of \phi yields

|\phi(u) - \phi(v)| < k_1 \cdot \epsilon.

Therefore, we will define the index sets

\begin{aligned} A &:= \{i : M_i(f,P) - m_i(f,P) < \delta\}, \\ B &:= \{i : M_i(f,P) - m_i(f,P) \geq \delta\}. \end{aligned}

For each i,

\begin{aligned} M_i(\phi \circ f, P) - m_i(\phi \circ f, P) &= \sup_{u, v \in [x_{i-1}, x_i] } (\phi(u) - \phi(v)). \end{aligned}

For i \in A,

\displaystyle M_i(\phi \circ f, P) - m_i(\phi \circ f, P) \leq k_1 \cdot \epsilon.

For i \in B, since \phi is bounded, suppose |\phi| \leq K. Then

\displaystyle M_i(\phi \circ f, P) - m_i(\phi \circ f, P) \leq 2K.

Therefore,

\displaystyle \begin{aligned} U(\phi \circ f, P) - L(\phi \circ f, P) &< \sum_{i \in A} (k_1 \cdot \epsilon) \cdot \Delta x_i + \sum_{i \in B} 2K \cdot \Delta x_i \\ &= (k_1 \cdot \epsilon) \cdot \sum_{i \in A} \Delta x_i + 2K \cdot \sum_{i \in B} \Delta x_i \\ &\leq (k_1 \cdot \epsilon) \cdot (b-a) + 2K \cdot \sum_{i \in B} \Delta x_i. \end{aligned}

We have run into a problem. The first term can be controlled pretty well, but not the second. The key idea is to take advantage of the integrability of f. Since each “height” is \geq \delta and the region under f has finite area, the total “width” needs to be tiny.

To synthesise this observation, we make the estimate

\displaystyle \begin{aligned} k_2 \cdot \epsilon &> \sum_{i \in B} (M_i(f, P) - m_i(f, P)) \Delta x_i \\ &\geq \sum_{i \in B} \delta \cdot \Delta x_i \\ &= \delta \cdot \sum_{i \in B} \Delta x_i. \end{aligned}

This yields the estimate

\displaystyle \sum_{i \in B} \Delta x_i < \frac{k_2 \cdot \epsilon}{\delta}.

Therefore,

\displaystyle \begin{aligned} U(\phi \circ f, P) - L(\phi \circ f, P)  &\leq  (k_1 \cdot \epsilon) \cdot (b-a) + 2K  \cdot \sum_{i \in B} \Delta x_i \\ &<(k_1 \cdot \epsilon) \cdot (b-a) + 2K \cdot \frac{k_2 \cdot \epsilon}{\delta} \\ &= \left(k_1 \cdot (b-a) + 2K \cdot \frac{k_2}{\delta}\right) \cdot \epsilon. \end{aligned}

Taking care of the dependencies, setting k_1 = 1/(2(b-a)), k_2 = \delta/(4K) yields the desired result.

Problem 2. Construct an integrable function f : [a, b] \to \mathbb R be an integrable function with m \leq f \leq M and an integrable function \phi : [m, M] \to \mathbb R such that \phi \circ f is not integrable.

Solution. Letting f : [0, 1] \to \mathbb R be the popcorn function and defining \phi : [0, 1] \to \mathbb R by \phi(x) = 0 if x = 0 and \phi(x) = 1 otherwise. Both f, \phi are integrable. Then \phi \circ f = \mathbb I_{\mathbb Q} : [0, 1] \to \mathbb R is a bounded function known as the Dirichlet function. We claim that this function is not Riemann-integrable.

Let \epsilon > 0 be suitably chosen and P = \{x_0,x_1,\dots,x_n\} be any partition of [0, 1]. For each i, since \mathbb Q \cap [x_{i-1}, x_i] and [x_{i-1}, x_i]\backslash \mathbb Q are both dense in [x_{i-1}, x_i], there exist r \in \mathbb Q \cap [x_{i-1}, x_i], s \in [x_{i-1}, x_i]\backslash \mathbb Q, yielding

\begin{aligned} 0 &\leq m_i(f, P) \leq f(s) = 0,\\ 1 &= f(r) \leq M_i(f, P) \leq 1.\end{aligned}

so that m_i(f, P) = 0, M_i(f, P) = 1. Therefore,

\begin{aligned} U(f, P) - L(f, P) &= \sum_{i =1}^n (M_i(f, P) - m_i(f,P))\Delta x_i \\ &= \sum_{i =1}^n (1 - 0)\Delta x_i \\ &= (1 - 0)\cdot \sum_{i =1}^n \Delta x_i \\ &= (1 - 0) \cdot 1 = 1. \end{aligned}

Setting \epsilon = 1/2 < 1 yields the result that the Dirichlet function is not integrable.

—Joel Kindiak, 21 Jan 25, 0033H


Leave a comment