Kronecker Approximation

After class one day, one of my students shared with me about this fascinating result. The source material comes from this video, and the writeup is my interpretation of its key ideas.

Let \mathbb K be an ordered field.

Problem 1. Prove that for \mathbb K-sequences ( x_n ), ( y_n ), if x_n \to 0 and y_n is bounded, then x_n \cdot y_n \to 0.

(Click for Solution)

Solution. Since (y_n) is bounded, find M > 0 such that |y_n| < M. Fix \epsilon > 0. Since x_n \to 0, for any k > 0, there exists N \in \mathbb N such that if n > N, then |x_n| < k \cdot \epsilon. By construction,

|x_n \cdot y_n| = |x_n| \cdot | y_n | < k \cdot \epsilon \cdot M.

Setting k := 1/M > 0 yields the result x_n \cdot y_n \to 0.

For the rest of this exercise, let \alpha be an irrational number.

Definition 1. For any x \in \mathbb R, define the fractional part of x by \{ x \} := x - \lfloor x \rfloor.

Problem 2. Prove that for distinct positive integers p, q, \{p \alpha\} \neq \{q \alpha\}.

(Click for Solution)

Solution. Suppose for a contradiction that there exist distinct positive integers p, q such that \{p \alpha\} = \{q \alpha \}. By the definition of the fractional part,

\begin{aligned}p \alpha - \lfloor p\alpha \rfloor &= q \alpha - \lfloor q \alpha \rfloor\quad \Rightarrow \quad \alpha = \frac{ \lfloor p\alpha \rfloor - \lfloor q \alpha \rfloor}{p - q} \in \mathbb Q, \end{aligned}

a contradiction.

Problem 3. Prove that for any n \in \mathbb N, there exist integers p_n, q_n such that

0 < \{ p_n \alpha \} - \{ q_n \alpha \} < 1/n.

(Click for Solution)

Solution. Fix n \in \mathbb N. By Problem 2, consider the n+1 distinct values

\{\alpha \},\{2\alpha\},\dots, \{n \alpha\}, \{(n+1)\alpha\}

and the n equally-spaced sub-intervals of [0, 1):

[0, 1/n), [1/n, 2/n), \dots, [(n-1)/n, 1).

This means there exists integers i_n, p_n, q_n such that

\{p_n \alpha\}, \{q_n\alpha\} \in [i_n/n, (i_n+1)/n)\quad \Rightarrow \quad 0 < \{ p_n \alpha \} - \{ q_n \alpha \} < 1/n.

Problem 4. Define

A := \mathbb Z + \alpha \mathbb Z \equiv \{ m + n \alpha : m, n \in \mathbb Z\}.

Prove that for any x \in \mathbb R, there exists an A-sequence ( x_n ) such that x_n \to x.

(Click for Solution)

Solution. Fix x \in \mathbb R. Use Problem 3 to define the sequence (y_n) by y_n := \{ p_n \alpha \} - \{ q_n \alpha \}. It is clear that y_n \to 0 and each y_n \neq 0. Define x_n := y_n \cdot \lfloor x/y_n \rfloor. Then

\displaystyle x_n =  y_n \cdot \lfloor x/y_n \rfloor = y_n \cdot \left( \frac x{y_n} - \left\{ \frac x{y_n} \right\}\right)= x - y_n \left\{ \frac x{y_n} \right\}.

By the definition of the fractional part, the sequence ( \{x / y_n \} ) is bounded. Since y_n \to 0, by Problem 1, we have y_n \cdot \{x / y_n \} \to 0. Hence, x_n \to x.

It remains to verify that x_n \in A for each n. Indeed,

\begin{aligned} x_n &=  y_n \cdot \lfloor x/y_n \rfloor \\ &= (\{ p_n \alpha \} - \{ q_n \alpha \}) \cdot \lfloor x/y_n \rfloor \\ &= \{ p_n \alpha \} \cdot \lfloor x/y_n \rfloor - \{ q_n \alpha \} \cdot \lfloor x/y_n \rfloor \\ &= (p_n \alpha - \lfloor p_n \alpha \rfloor) \cdot \lfloor x/y_n \rfloor -  (q_n \alpha - \lfloor q_n \alpha \rfloor) \cdot \lfloor x/y_n \rfloor \\ &= \underbrace{ (\lfloor q_n \alpha \rfloor - \lfloor p_n \alpha \rfloor) \cdot \lfloor x/y_n \rfloor }_{\in \mathbb Z} +\,  \alpha \cdot \underbrace{ (p_n - q_n) \cdot\lfloor x/y_n \rfloor }_{\in \mathbb Z} \\ &\in \mathbb Z + \alpha \mathbb Z = A, \end{aligned}

as required.

Problem 5. Define

B := \sin(\mathbb N) \equiv \{ \sin(n) : n \in \mathbb N\}.

Prove that for any y \in [-1, 1], there exists a B-sequence ( y_n ) such that y_n \to y.

(Click for Solution)

Solution. For any y \in [-1, 1], find u \in (0, \infty) \subseteq \mathbb R such that \sin(u) = y. Define

C := \mathbb Z + 2\pi \mathbb Z.

By Problem 4, there exists a C-sequence (u_n) such that u_n \to u. Denote u_n = s_n + 2\pi \cdot t_n with s_n \in \mathbb N. Defining y_n = \sin(s_n) \in B,

y_n = \sin(s_n) = \sin(s_n + 2\pi \cdot t_n) = \sin(u_n) \to \sin(u) = y.

—Joel Kindiak, 24 Apr 25, 1851H

,

Published by


Leave a comment