Mutated Integrating Factors

Big Idea

To solve the linear ODE

\displaystyle \frac{\mathrm dy}{\mathrm dx} + P(x)y = Q(x),

we compute the integrating factor

I(x) := e^{\int P(x)\, \mathrm dx},

then obtain the general solution

\displaystyle I(x) \cdot y = \int I(x) Q(x)\, \mathrm dx,

where we need to evaluate the right-hand side. For a derivation of this solving technique, click here.

Questions

Question 1. Solve the differential equation

\displaystyle \frac{\mathrm dy}{\mathrm dx} - 2xy = xe^{x^2}.

(Click for Solution)

Solution. We first identify P(x) = -2x and Q(x) = xe^{x^2}. By the method of integrating factors, compute

I(x) = e^{\int P(x)\, \mathrm dx} = e^{\int -2x\, \mathrm dx} = e^{-x^2}.

Then the general solution is given by

\begin{aligned} I(x) y &= \int I(x)Q(x)\, \mathrm dx \\ e^{-x^2} y &= \int e^{-x^2} \cdot xe^{x^2}\, \mathrm dx \\ &= \int x\, \mathrm dx \\ &=\frac{x^2}{2} + C.\end{aligned}

Question 2. Solve the differential equation

\displaystyle \frac{\mathrm dy}{\mathrm dx} - \frac yx = xe^x,\quad x > 0.

(Click for Solution)

Solution. We first identify P(x) = -1/x and Q(x) = xe^x. By the method of integrating factors, compute

I(x) = e^{\int P(x)\, \mathrm dx} = e^{\int -\frac 1x\, \mathrm dx} = \displaystyle e^{-{\ln |x|}} = \frac 1{|x|} = \frac 1x.

Then the general solution is given by

\begin{aligned} I(x) y &= \int I(x)Q(x)\, \mathrm dx \\ \frac 1x \cdot y &= \int \frac 1x \cdot xe^{x}\, \mathrm dx \\ &= \int e^x\, \mathrm dx \\ &= e^x + C.\end{aligned}

Question 3. Solve the differential equation

\displaystyle \frac{\mathrm dy}{\mathrm dx} + y = y^3.

Hint. Use the substitution u = y^{-2}.

(Click for Solution)

Solution. By the given substitution, applying the chain rule yields

\displaystyle \frac{\mathrm du}{\mathrm dx} = -2 y^{-3} \cdot \frac{\mathrm dy}{\mathrm dx}.

Dividing the original equation by y^3 then multiplying by -2,

\displaystyle -2y^{-3} \cdot \frac{\mathrm dy}{\mathrm dx} -2y^{-2} = -2.

Substituting, we obtain

\displaystyle \frac{\mathrm du}{\mathrm dx} - 2u = -2.

We identify P(x) = -2 and Q(x) = -2. By the method of integrating factors, compute

I(x) = e^{\int P(x)\, \mathrm dx} = e^{\int -2\, \mathrm dx} = e^{-2x}.

Then the general solution is given by

\begin{aligned} I(x) \cdot u &= \int I(x)Q(x)\, \mathrm dx \\ e^{-2x} \cdot u &= \int e^{-2x} \cdot -2\, \mathrm dx \\ &=e^{-2x} + C.\end{aligned}

Back-substituting u = y^{-2} yields the general solution

e^{-2x} \cdot y^{-2} = e^{-2x} + C.

Exercise. Try to solve the simplified differential equation using the method of separable variables too.

This is an example of a Bernoulli ODE. Details here.

Question 4. Solve the differential equation

\displaystyle \frac{\mathrm dy}{\mathrm dx} = \frac{y}{x+y^3},\quad y > 0.

(Click for Solution)

Solution. By the inverse of a derivative,

\begin{aligned} \frac{\mathrm dx}{\mathrm dy} &= \frac{x+y^3}{y} = \frac xy + y^2. \end{aligned}

Hence,

\displaystyle \frac{\mathrm dx}{\mathrm dy} - \frac 1y \cdot x = y^2.

We identify P(y) = -1/y and Q(y) = y^2. By the method of integrating factors, compute

I(y) = e^{\int P(y)\, \mathrm dx} = e^{\int - \frac 1y\, \mathrm dy} = e^{-{\ln|y|} } =\displaystyle \frac{1}{|y|} = \frac 1y.

Then the general solution is given by

\begin{aligned} I(y) \cdot x &= \int I(y)Q(y)\, \mathrm dy \\ \frac 1y \cdot x &= \int \frac 1y \cdot y^2\, \mathrm dy \\ &= \int y\, \mathrm dy \\ \frac{x}{y} &= \frac{y^2}{2} + C.\end{aligned}

—Joel Kindiak, 18 Apr 25, 1138H

,

Published by


Leave a comment