Differential Equation Rally

Big Idea

The general solution to the differential equation

\displaystyle a \frac{\mathrm d^2 y}{\mathrm dx^2} + b \frac{\mathrm dy}{\mathrm dx} + cy = 0

is given by:

  • y = C_1 e^{\alpha x} + C_2 e^{\beta x} if the roots \alpha \neq \beta are real and distinct,
  • y = (C_1x + C_2) e^{\alpha x} if the roots \alpha = \beta are real and repeated,
  • y = e^{px}(C_1 \cos qx + C_2 \sin qx) if the roots p \pm iq are complex conjugates,

where \alpha, \beta are the roots (i.e. the auxiliary roots) of the characteristic equation or auxiliary equation

am^2 + bm + c = 0.

In the first case, we usually choose \alpha < \beta for purely aesthetic purposes. We will also revise previous topics in this post.

Questions

Question 1. Solve the differential equation

\displaystyle \frac{\mathrm dy}{\mathrm dx} = \frac{3x^2}{2y}.

(Click for Solution)

Solution. By the method of separable variables,

\begin{aligned} \frac{\mathrm dy}{\mathrm dx} &= \frac{3x^2}{2y} \\ \int 2y\, \mathrm dy &= \int 3x^2\, \mathrm dx \\ y^2 &= x^3 + C. \end{aligned}

Question 2. Solve the differential equation

\displaystyle \frac{\mathrm dy}{\mathrm dx} - 3y = e^{3x} \cos(x).

(Click for Solution)

Solution. We first identify P(x) = -3 and Q(x) = e^{3x} \cos(x). We compute the integrating factor

I(x) = e^{\int -3\, \mathrm dx} = e^{-3x}.

Thus, the general solution is given by

\begin{aligned} e^{-3x} \cdot y &= \int e^{-3x} \cdot e^{3x}\cos(x)\, \mathrm dx \\ &= \int \cos(x)\, \mathrm dx \\ &= \sin(x) + C. \end{aligned}

Question 3. Solve the differential equation

\displaystyle 3\frac{\mathrm d^2 y}{\mathrm dx^2} + 2 \frac{\mathrm dy}{\mathrm dx} - y = 0.

(Click for Solution)

Solution. The auxiliary equation 3m^2 + 2m - 1 = 0 has auxiliary roots m = -1, 1/3. Since the roots are real and distinct, the general solution is given by y = C_1 e^{-x} + C_2 e^{\frac 13 x}.

Question 4. Solve the differential equation

\displaystyle 4\frac{\mathrm d^2 y}{\mathrm dx^2} - 4 \frac{\mathrm dy}{\mathrm dx} + y = 0.

(Click for Solution)

Solution. The auxiliary equation 4m^2 - 4m + 1 = 0 has auxiliary roots m = 1/2. Since the roots are real and repeated, the general solution is given by y = (C_1x + C_2) e^{\frac 12 x}.

Question 5. Solve the differential equation

\displaystyle 5\frac{\mathrm d^2 y}{\mathrm dx^2} - 4 \frac{\mathrm dy}{\mathrm dx} + y = 0.

(Click for Solution)

Solution. The auxiliary equation 5m^2 - 4m + 1 = 0 has auxiliary roots m = \frac 25 \pm \frac 15 i. Since the roots are complex conjugates, the general solution is given by y = e^{\frac 25 x} ( C_1 \cos(\frac 15 x) + C_2 \sin(\frac 15 x) ).

Question 6. Solve the differential equation

\displaystyle xe^y \frac{\mathrm dy}{\mathrm dx} - 2e^y = x^2 \ln(x), \quad x \neq 0.

(Click for Solution)

Solution. Make the substitution u = e^y so that \displaystyle \frac{\mathrm du}{\mathrm dx} = e^y \frac{\mathrm dy}{\mathrm dx}, and hence

\begin{aligned} x\frac{\mathrm du}{\mathrm dx} -2u = x^2 \ln(x). \end{aligned}

Dividing by x,

\begin{aligned} \frac{\mathrm du}{\mathrm dx} -\frac 2x \cdot u = x \ln(x). \end{aligned}

We then identify P(x) = -2/x and Q(x) = x \ln(x). Computing the integrating factor,

\begin{aligned} I(x) &= e^{\int -\frac 2x\, \mathrm dx} = e^{-2 \ln|x|} = \displaystyle \frac 1{x^2}. \end{aligned}

Thus, the general solution is given by

\begin{aligned} \frac 1{x^2} \cdot u &= \int \frac 1{x^2} \cdot x \ln(x)\, \mathrm dx \\ &= \int \frac 1x \cdot \ln(x)\, \mathrm dx. \end{aligned}

To simplify the right-hand side, we integrate by substitution. Making the substitution v = \ln(x) so that \mathrm dv = \frac 1x\, \mathrm dx,

\begin{aligned} \int \frac 1x \cdot \ln(x)\, \mathrm dx &= \int v\, \mathrm dv = \frac{v^2}{2} + C = \frac{(\ln(x))^2}{2} + C. \end{aligned}

Finally, recalling that u = e^y,

\displaystyle \frac 1{x^2} \cdot e^y = \frac{(\ln(x))^2}{2} + C.

Question 7. Modify your strategy in Question 6 to solve the differential equation

\displaystyle xe^y \frac{\mathrm dy}{\mathrm dx} - 2e^y = x^n \ln(x), \quad x \neq 0,

where n \neq 2 is any integer.

(Click for Solution)

Solution. We leave it as an exercise in integration by parts to verify that

\displaystyle \frac 1{x^2} \cdot e^y = \int x^{n-3} \ln(x)\, \mathrm dx = \frac{ x^{n-2} \ln(x)}{n-2} - \frac{ x^{n-2}}{(n-2)^2} + C.

—Joel Kindiak, 18 Apr 25, 1211H

Published by


Leave a comment