Flavors of Integrability

In this post, we explore the various settings in which functions can be integrated. Here, we shorten “Riemann-integrable” by “integrable” for brevity.

Problem 1. Let f : [a, b] \to \mathbb R be a bounded function. Suppose for any c \in (a, b), f|_{[a,c]} : [a, c] \to \mathbb R is integrable. Prove that f is integrable.

Solution. Since f is bounded, there exists M > 0 such that for any x \in [a, b], |f(x)| \leq M.

Fix \epsilon > 0. Fix \delta \in (0, b-a) to be tuned later. Since f_{[a,b-\delta]} is integrable, for any k > 0 there exists a partition P := \{x_0 = a, x_1,\dots,x_n = b-\delta\} such that

U(f_{[a,b-\delta]}, P) - L(f_{[a,b-\delta]}, P) < k \cdot \epsilon.

Define the partition Q := \{x_0, x_1,\dots, x_n, x_{n+1} = b\} of [a, b]. Expanding the definition,

\begin{aligned} &U(f, Q) - L(f, Q)\\ &= U(f, P) - L(f, P) + (M_{n+1}(f, Q) - m_{n+1}(f, Q))\Delta_{n+1} \\ &< k \cdot \epsilon + (M+M) \cdot \delta \\ &< k \cdot \epsilon + 2M \cdot \delta. \end{aligned}

Hence, set k := 1/2 and \delta := \epsilon/(4M) to yield the result.

Henceforth, we will say f : [a, b] \to \mathbb R is integrable on K \subseteq [a, b] to mean that f|_K : K \to \mathbb R is integrable.

Problem 2. Let f : [a, b] \to \mathbb R be bounded. Suppose there exists c \in (a, b) such that f is integrable on [a, c] and [c, b]. Then f is integrable on [a, b]. Furthermore,

\displaystyle \int_a^b f = \int_a^c f + \int_c^b f.

Solution. Fix \epsilon > 0. For any k_1 > 0, find a partition P of [a, c] such that

U(f, P) - L(f, P) < k_1 \cdot \epsilon.

For any k_2 > 0, find a partition Q of [c, b] such that

U(f, Q) - L(f, Q) < k_2 \cdot \epsilon.

Then P \cup Q is a partition of [a, b], and

\begin{aligned}&U(f, P \cup Q) - L(f, P \cup Q)\\ &= (U(f, P) - L(f, P)) + (U(f, Q) - L(f, Q)) \\ &< k_1 \cdot \epsilon + k_2 \cdot \epsilon \\ &= (k_1 + k_2) \cdot \epsilon.\end{aligned}

Setting k_1 = k_2 = 1/2 yields the desired result.

Finally, we prove the integral identity in two directions. Fix \epsilon > 0. Find a partition P such that

\displaystyle \int_a^b f  < L(f, P) + \epsilon.

Define the partitions

\begin{aligned} P_- &:= \{x \in P : x < c\}  \cup \{c\} \subseteq [a, c],\\ P_+ &:= \{x \in P : x > c\} \cup \{c\} \subseteq [c, b]. \end{aligned}

Then

\displaystyle \int_a^b f <  L(f, P) + \epsilon \leq L(f, P_-) + L(f, P_+) + \epsilon \leq \int_a^c f + \int_c^b f+ \epsilon .

Taking \epsilon \to 0^+ yields the inequality

\displaystyle \int_a^b f \leq \int_a^c f + \int_c^b f.

For the other direction, fix \epsilon > 0. For k_1,k_2 > 0, find partitions P_- \subseteq [a, c], P_+ \subseteq [c, b], such that

\displaystyle\int_a^c f  < L(f, P_-) + k_1 \cdot \epsilon \quad \int_c^b f  < L(f, P_+) + k_2 \cdot \epsilon.

Defining P := P_- \cup P_+,

\begin{aligned} \int_a^c f + \int_c^b f & < (L(f, P_-) + L(f, P_+)) + (k_1 + k_2) \cdot \epsilon \\ & = L(f, P) + (k_1 + k_2) \cdot \epsilon \\ &\leq \int_a^b f  +  (k_1 + k_2) \cdot \epsilon. \end{aligned}

Setting k_1 = k_2 = 1/2,

\displaystyle \int_a^c f + \int_c^b f < \int_a^b f + \epsilon.

Taking \epsilon \to 0^+,

\displaystyle \int_a^c f + \int_c^b f \leq \int_a^b f.

Combining the results yields the desired result.

Problem 3. Let f : [a, b] \to \mathbb R be continuous except at some c \in (a, b). Prove that f is integrable.

Solution. For any u \in (a, c), f is continuous on [a, u] and thus integrable on [a, u]. By Problem 1, f is integrable on [a, c]. Similarly, f is integrable on [c, b]. By Problem 2, f is integrable on [a, b].

Problem 4. Let f : [a, b] \to \mathbb R be increasing. Prove that f is integrable.

Solution. We prove [a, b] = [0,1] for simplicity. We observe that for any x \in (a, b), f(a) < f(x) < f(b) so that f is bounded. Fix \epsilon > 0. For any k > 0, use the Archimedean property to find n \in \mathbb N such that 1/n < k \cdot \epsilon. Define P := \{x_0, x_1, \dots, x_n\} \subseteq [0, 1] by x_i = i/n. Then

\begin{aligned} U(f, P) - L(f, P) &= \sum_{i=1}^n (M_i(f, P) - m_i(f, P)) \Delta x_i \\ &= \sum_{i=1}^n (f(x_i) - f(x_{i-1})) \cdot \frac 1n \\ &= \frac 1n \sum_{i=1}^n (f(x_i) - f(x_{i-1})) \\ &= \frac 1n (f(x_n) - f(x_0)) \\ &= \frac {f(1) - f(0)}n \\ & < (f(1) - f(0)) \cdot k \cdot \epsilon.  \end{aligned}

Since f(1) - f(0) > 0, set k := 1/(f(1) - f(0)) > 0 to yield the desired result.

—Joel Kindiak, 20 Jan 25, 1941H

,

Published by


Leave a comment