The Popcorn Function

Problem 1. Prove that the popcorn function by f : [0, 1] \to \mathbb R by

\displaystyle f(x) = \begin{cases} 1/q, & x=p/q,\ p,q\ \text{coprime,} \\ 0, & \text{otherwise}. \end{cases}

is Riemann-integrable.

(Click for Solution)

Solution. Fix \epsilon > 0. The key insight is to observe that for any k > 0, there are only finitely many rationals x such that 1/f(x) < 1/(k \cdot \epsilon) \iff f(x) > k \cdot \epsilon. Denote these rationals in ascending order by \{r_1,\dots,r_M\}. To “separate” these rationals, define

\displaystyle \delta := \frac 13 \cdot \min_{2 \leq i \leq M} (r_i - r_{i-1})

Define the partition

\displaystyle P := \{0,1\} \cup \bigcup_{i=1} \{r_i - \delta, r_i + \delta\} \subseteq [0, 1].

Then

\begin{aligned} U(f, P) - L(f, P) &= \sum_{i = 1}^{|P|} (M_i(f, P) - m_i(f, P)) \Delta x_i \\ &\leq (1 - 0) \cdot (k \cdot \epsilon) + M \cdot 1 \cdot 2\delta\\ &= k \cdot \epsilon + 2M \cdot \delta. \end{aligned}

To obtain the desired result, set k = 1/4 and refine the definition of \delta to

\displaystyle \delta := \min \left\{ \frac{\epsilon}{4M}, \frac 13 \cdot \min_{2 \leq i \leq M} (r_i - r_{i-1}) \right\}.

—Joel Kindiak, 20 Jan 25, 2143H

Published by


Leave a comment