A Two-Part Strategy

Big Idea

The general solution to the differential equation

\displaystyle a \frac{\mathrm d^2 y}{\mathrm dx^2} + b \frac{\mathrm dy}{\mathrm dx} + cy = f(x)

is y = y_{\mathrm P} + y_{\mathrm C}. For convenience, we use \mathcal Dnotation to obtain

\displaystyle (a \mathcal D^2 + b \mathcal D + c)y = f(x)

We compute y_{\mathrm C} by setting the right-hand side to zero:

\displaystyle (a \mathcal D^2 + b \mathcal D + c)y = 0.

Then y_{\mathrm C} will take one of three forms. We compute y_{\mathrm P} by using inverse-\mathcal D operator techniques to evaluate

\displaystyle y_{\mathrm P} = \frac{1}{a \mathcal D^2 + b \mathcal D + c}(f(x)).

Questions

Question 1. Evaluate \displaystyle \frac{1}{\mathcal D^2 + 2}(1 - e^{2x} + \sin(2x)).

(Click for Solution)

Solution. By the linearity of the inverse-\mathcal D operator,

\begin{aligned}\frac{1}{\mathcal D^2 + 2}(1 - e^{2x} + \sin(2x)) &= \frac{1}{\mathcal D^2 + 2}(1) - \frac{1}{\mathcal D^2 + 2}(e^{2x}) + \frac{1}{\mathcal D^2 + 2}(\sin(2x)) \\ &= \frac{1}{0^2 + 2} \cdot 1 - \frac{1}{2^2 + 2}  \cdot e^{2x} + \frac{1}{-2^2 + 2}  \cdot \sin(2x) \\ &= \frac{1}{2} - \frac{1}{6}  \cdot e^{2x} - \frac{1}{2}  \cdot \sin(2x). \end{aligned}

Question 2. Solve the differential equation

\displaystyle y'' - 4y' + 4y = e^{2x} + 4.

(Click for Solution)

Solution. Rewriting in \mathcal D-notation,

(\mathcal D^2 - 4 \mathcal D + 4)y = e^{2x} + 4.

The general solution is given by y = y_{\mathrm P} + y_{\mathrm C}. To obtain the complementary function y_{\mathrm C}, we solve the equation

(\mathcal D^2 - 4 \mathcal D + 4)y = 0.

Since the characteristic equation m^2 - 4m + 4 = 0 has real and repeated auxiliary roots m = 2, the general solution is given by

y_{\mathrm C} = (C_1 x + C_2) e^{2x}.

To evaluate y_{\mathrm P}, we first use linearity to compute

\begin{aligned} y_{\mathrm P} &= \frac{1}{\mathcal D^2 + 4 \mathcal D + 4}(e^{2x} + 4) \\ &= \underbrace{\frac{1}{\mathcal D^2 + 4 \mathcal D + 4}(e^{2x})}_{y_1} + \underbrace{\frac{1}{\mathcal D^2 + 4 \mathcal D + 4}(4)}_{y_2}. \end{aligned}

To shorten presentation, the general solution is y = y_1 + y_2 + y_{\mathrm C}. For the simpler term y_2,

\displaystyle y_2 = \frac{1}{\mathcal D^2 + 4 \mathcal D + 4}(4) = \frac 1{0^2 + 4 \cdot 0 + 4} \cdot 4 = 1.

For the challenging term y_1, we first replace each \mathcal D with \mathcal D + 2 to obtain

\begin{aligned} (\mathcal D + 2)^2 - 4 (\mathcal D + 2) + 4 &= (\mathcal D^2 + 4\mathcal D + 4) - (4\mathcal D + 8) + 4 = \mathcal D^2. \end{aligned}

Therefore,

\begin{aligned} y_1 &= \frac{1}{\mathcal D^2 - 4 \mathcal D + 4}(e^{2x}) \\ &= e^{2x} \cdot \frac{1}{\mathcal D^2} (1) \\ &= e^{2x} \cdot \frac 1{\mathcal D}\left(\frac 1{\mathcal D} (1)\right) \\ &= e^{2x} \cdot \frac 1{\mathcal D}(x) = e^{2x} \cdot \frac{x^2}{2}. \end{aligned}

Consolidating all results,

y = y_1 + y_2 + y_{\mathrm C} = (\frac{1}{2} x^2 e^{2x} + 1) + (C_1 x + C_2) e^{2x}.

Question 3. Solve the differential equation

\displaystyle y'' + 4y' + 4y = e^{-2x} + e^{2x}.

(Click for Solution)

Solution. Rewriting in \mathcal D-notation,

(\mathcal D^2 + 4 \mathcal D + 4)y = e^{-2x} + e^{2x}.

The general solution is given by y = y_{\mathrm P} + y_{\mathrm C}. To obtain the complementary function y_{\mathrm C}, we solve the equation

(\mathcal D^2 + 4 \mathcal D + 4)y = 0.

Since the characteristic equation m^2 + 4m + 4 = 0 has real and repeated auxiliary roots m = -2, the general solution is given by

y_{\mathrm C} = (C_1 x + C_2) e^{-2x}.

To evaluate y_{\mathrm P}, we first use linearity to compute

\begin{aligned} y_{\mathrm P} &= \frac{1}{\mathcal D^2 + 4 \mathcal D + 4}(e^{-2x} + e^{2x}) \\ &= \underbrace{\frac{1}{\mathcal D^2 + 4 \mathcal D + 4}(e^{-2x})}_{y_1} + \underbrace{\frac{1}{\mathcal D^2 + 4 \mathcal D + 4}(e^{2x})}_{y_2}. \end{aligned}

To shorten presentation, the general solution is y = y_1 + y_2 + y_{\mathrm C}. For the simpler term y_2,

\displaystyle y_2 = \frac{1}{\mathcal D^2 + 4 \mathcal D + 4}(e^{2x}) = \frac 1{2^2 + 4 \cdot 2 + 4} \cdot e^{2x} = \frac{1}{16} e^{2x}.

For the challenging term y_1, we first replace each \mathcal D with \mathcal D - 2 to obtain

\begin{aligned} (\mathcal D - 2)^2 + 4 (\mathcal D - 2) + 4 &= (\mathcal D^2 - 4\mathcal D + 4) + (4\mathcal D - 8) + 4 = \mathcal D^2. \end{aligned}

Therefore,

\begin{aligned} y_1 &= \frac{1}{\mathcal D^2 + 4 \mathcal D + 4}(e^{-2x}) \\ &= e^{-2x} \cdot \frac{1}{\mathcal D^2} (1) \\ &= e^{-2x} \cdot \frac 1{\mathcal D}\left(\frac 1{\mathcal D} (1)\right) \\ &= e^{-2x} \cdot \frac 1{\mathcal D}(x) = e^{-2x} \cdot \frac{x^2}{2}. \end{aligned}

Consolidating all results,

y = y_1 + y_2 + y_{\mathrm C} = \frac{1}{2} x^2 e^{-2x} + \frac{1}{16} e^{2x} + (C_1 x + C_2) e^{-2x}.

—Joel Kindiak, 18 Apr 25, 1440H

Published by


Leave a comment