Odd and Even Functions

Recall that \sin(-x) = -\sin(x) and \cos(-x) = \cos(x) for any x \in \mathbb R.

Definition 1. For any function f : \mathbb R \to \mathbb R, define \tilde f : \mathbb R \to \mathbb R by \tilde f(x) := f(-x).

Problem 1. Given functions f, g: \mathbb R \to \mathbb R, define h_1 := f + g and h_2 := f \cdot g. Prove that \tilde h_1 = \tilde f + \tilde g and \tilde h_2 = \tilde f \cdot \tilde g.

(Click for Solution)

Solution. By definition,

\begin{aligned} \tilde h_1(x) = h_1(-x) &= (f+g)(-x) \\ &= f(-x) + g(-x) \\ &= \tilde f(x) + \tilde g(x) \\ &= (\tilde f + \tilde g)(x), \end{aligned}

and

\begin{aligned} \tilde h_2(x) = h_2(-x) &= (f \cdot g)(-x) \\ &= f(-x) \cdot g(-x) \\ &= \tilde f(x) \cdot \tilde g(x) \\ &= (\tilde f \cdot \tilde g)(x).  \end{aligned}

Definition 2. A function f : \mathbb R \to \mathbb R is odd (resp. even) if there exists an odd (resp. even) integer n such that \tilde f = (-1)^n \cdot f.

Example 1. For any integer n, the function f_n defined by f_n(x) = x^n is an odd (resp. even) function if and only if n is an odd (resp. even) number. Furthermore, \sin is an odd function while \cos is an even function.

Problem 2. For any function f: \mathbb R \to \mathbb R and real number \alpha \in \mathbb R, define the function f_\alpha by f_\alpha(x) := f(\alpha x). In particular, f_{-1} = \tilde f. Prove that f_\alpha is odd (resp. even) if f is odd (resp. even).

(Click for Solution)

Solution. We observe that if f is odd or even, then \tilde f = (-1)^n f, so that

\begin{aligned} \tilde f_\alpha(x) &= f_\alpha(-x) = f(\alpha(-x))= f(-(\alpha x)) \\ &= \tilde f(\alpha x) = (-1)^n \cdot f(\alpha x)  = (-1)^n  \cdot f_\alpha(x), \end{aligned}

hence \tilde f_\alpha= (-1)^n \cdot f_\alpha.

Problem 3. Prove the following properties:

  • if f, g are odd, then f + g is odd and f \cdot g is even,
  • if f, g are even, then f + g is even and f \cdot g is even,
  • if f is odd and g is odd (resp. even), then g \circ f is odd (resp. even) whenever it exists.
  • if f is even, then g \circ f is even.
(Click for Solution)

Solution. Suppose \tilde f = (-1)^m \cdot f and \tilde g = (-1)^n \cdot g, and assume m \leq n for simplicity. Denote h_1 = f+g and h_2 = f \cdot g as per Problem 1. Then

\tilde h_1 = \tilde f + \tilde g = (-1)^m \cdot f + (-1)^n \cdot g = (-1)^m \cdot (f + (-1)^{n-m} \cdot g).

If m and n are both odd or both even, then n-m is even, so that

\tilde h_1 = (-1)^m \cdot (f + g) = (-1)^m \cdot h_1.

Hence, h_1 is odd (resp. even) if and only if f is odd (resp. even). Similarly,

\tilde h_2 = \tilde f \cdot \tilde g = (-1)^m \cdot f \cdot (-1)^n \cdot g = (-1)^{m+n} \cdot h_2.

If m and n are both odd or both even, then m+n is always even, so that \tilde h_2 = h_2 unconditionally, i.e. h_2 = f \cdot g is even. For the composite function, define h_3 := g \circ f. Then

\tilde h_3(x) = h_3(-x) = (g \circ f)(-x) = g(f(-x)) = g(\tilde f(x)) = (g \circ \tilde f)(x).

Applying the odd or even condition on f,

\begin{aligned} g \circ \tilde f &= g \circ (-(-1)^{m+1} \cdot f) \\ &= \tilde g \circ ((-1)^{m+1} \cdot f) \\ &= (-1)^n \cdot g \circ ((-1)^{m+1} \cdot f). \end{aligned}

If f is odd, then m + 1 is even, so that

\tilde h_3 = g \circ \tilde f = (-1)^n \cdot (g \circ f) = (-1)^n \cdot h_3.

Thus, h_3 is odd (resp. even) if and only if g is odd (resp. even). If f is even, then

\tilde h_3 = g \circ \tilde f = g \circ f = h_3,

so that h_3 is even.

Problem 4. For any function f: \mathbb R \to \mathbb R, prove that there exist a unique odd function f_1 and a unique even function f_2 such that f = f_1 + f_2.

(Click for Solution)

Solution. For existence, define the functions f_1, f_2 by

f_1 := \frac 12 \cdot (f - \tilde f),\quad f_2 := \frac 12 \cdot (f + \tilde f).

It is obvious that f = f_1 + f_2. Since \tilde{ \tilde f } = f,

\begin{aligned} \tilde f_1 &= \textstyle \frac 12 \cdot (\tilde f - \tilde{ \tilde f }) = \frac 12 \cdot (\tilde f - f) = -f_1, \\ \tilde f_2 &= \textstyle \frac 12 \cdot (\tilde f + \tilde{ \tilde f }) = \frac 12 \cdot (\tilde f + f) = f_2, \end{aligned}

so that f_1 is odd and f_2 is even. For uniqueness, suppose f = f_1 + f_2 = \hat f_1 + \hat f_2, where \hat f_1 is odd and \hat f_2 is even. Then g := f_1 - \hat f_1 = \hat f_2 - f_2, so that g is both odd and even. Hence,

g = \tilde g = -g \quad \Rightarrow \quad g = 0\quad \Rightarrow \quad \hat f_1 = f_1\quad \Rightarrow \quad \hat f_2 = f_2.

Problem 5. Fix a > 0, any odd continuous function f_1, and any even continuous function f_2. Prove that

\displaystyle \int_{-a}^a f_1 (x)\,\mathrm dx = 0, \quad \int_{-a}^a f_2 (x)\,\mathrm dx = 2 \cdot \int_0^a f_2 (x)\,\mathrm dx.

In particular, for any continuous function f : \mathbb R \to \mathbb R,

\displaystyle \int_{-a}^a f (x)\,\mathrm dx = 2 \cdot \int_0^a f_2 (x)\,\mathrm dx.

(Click for Solution)

Solution. Using a substitution,

\displaystyle \int_{-a}^0 f_1(x)\, \mathrm dx = \int_{a}^0 f_1(-t)\cdot (-1)\, \mathrm dt = \int_0^a -f_1(t)\, \mathrm dt = - \int_0^a f_1(t)\, \mathrm dt.

Therefore,

\displaystyle \begin{aligned} \int_{-a}^a f_1 (x)\,\mathrm dx &= \int_{-a}^0 f_1(x)\, \mathrm dx + \int_0^a f_1(x)\, \mathrm dx = 0.\end{aligned}

Similarly, we can prove that

\displaystyle \int_{-a}^0 f_2(x)\, \mathrm dx = \int_0^a f_2(t)\, \mathrm dt

so that

\displaystyle \begin{aligned} \int_{-a}^a f (x)\,\mathrm dx &= \int_{-a}^0 f_2(x)\, \mathrm dx + \int_0^a f_2(x)\, \mathrm dx = 2 \cdot \int_0^a f_2(x)\, \mathrm dx.\end{aligned}

Problem 6. For any continuous function f : \mathbb R \to \mathbb R and T > 0, define

\displaystyle a_n := \frac 2T \int_{-T/2}^{T/2} f(t)\, \mathrm \cos \left( \frac{2n \pi t}{T} \right)\, \mathrm dt,\quad b_n := \frac 2T \int_{-T/2}^{T/2} f(x)\, \mathrm \sin \left( \frac{2n \pi t}{T} \right)\, \mathrm dt.

Prove that a_n = 0 (resp. b_n = 0) if f is odd (resp. even).

(Click for Solution)

Solution. By Example 1 and Problem 2, \cos_{2n\pi/T} is even and \sin_{2n\pi/T} is odd. Thus, if f is odd, then f \cdot \cos_{2n\pi/T} is odd by Problem 3, so that a_n = 0 by Problem 5. Similarly, if f is even, then f \cdot \sin_{2n\pi/T} is odd by Problem 3, so that b_n = 0 by Problem 5.

—Joel Kindiak, 5 Aug 25, 2044H

,

Published by


Leave a comment