Prime Factorisation

Using the fundamental theorem of arithmetic, write natural numbers a, b in the form

\displaystyle a = \prod_{i=1}^n p_i^{\alpha_i},\quad b = \prod_{i=1}^n p_i^{\beta_i}

for primes p_i and non-negative indices \alpha_i, \beta_i.

Definition 1. Write d = \gcd(a, b) if it satisfies the following properties:

  • d \mid a and d \mid b,
  • if c \mid a and c \mid b, then c \leq d.

Problem 1. Prove that if c \mid a and c \mid b, then c \mid \gcd(a, b).

(Click for Solution)

Solution. Since c \leq \gcd(a, b), by the division algorithm, find unique integers q,r such that

\gcd(a, b) = q \cdot c + r,\quad 0 \leq r < \gcd(a,b).

We observe that r \mid a and r \mid b. Therefore, (\gcd(a,b) + r) \mid a and (\gcd(a, b) + r) \mid b. Hence,

\gcd(a,b) \leq \gcd(a,b) + r \leq \gcd(a, b) \quad \Rightarrow \quad r = 0.

Hence, c \mid \gcd(a,b).

Problem 2. Prove that \gcd(a, b) = \prod_{i=1}^n p_i^{\min\{ \alpha_i, \beta_i\} }.

(Click for Solution)

Solution. Denoting the right-hand side by d, it is clear that d \mid a and d \mid b so that by Problem 1, d \mid \gcd(a, b). On the other hand, use the fundamental theorem of arithmetic to find non-negative indices \gamma_i such that

\displaystyle \gcd(a,b) = \prod_{i=1}^n p_i^{\gamma_i}.

If there exists i such that \gamma_i > \alpha_i, then \gcd(a,b) \nmid a, a blatant contradiction. Therefore, \gamma_i \leq \alpha_i for any i. Similarly, \gamma_i \leq \beta_i. Therefore, \gamma_i \leq \min \{\alpha_i,\beta_i\}, so that \gcd(a,b) \mid d. Therefore, \gcd(a,b) = d.

Definition 2. Write m = \mathrm{lcm}(a, b) if it satisfies the following properties:

  • a \mid m and b \mid m,
  • for n > 0, if a \mid n and b \mid n, then m \leq n.

Problem 3. Prove that \gcd(a,b) \cdot \mathrm{lcm}(a,b) = a \cdot b. Deduce that

\displaystyle \mathrm{lcm}(a,b) = \prod_{i=1}^n p_i^{\max\{ \alpha_i, \beta_i\} }.

(Click for Solution)

Solution. Define m := (a \cdot b)/{\gcd(a,b)}. It is obvious that a \mid m and b \mid m. By definition,

\displaystyle \mathrm{lcm}(a,b) \leq m = \frac{a \cdot b}{\gcd(a,b)}\quad \Rightarrow \quad a \cdot b \geq \gcd(a,b) \cdot \mathrm{lcm}(a,b).

Use the division algorithm to obtain unique integers q \geq 0, r such that

a \cdot b = q \cdot \mathrm{lcm}(a,b) + r,\quad 0 \leq r < \mathrm{lcm}(a,b).

We observe that r = a \cdot b - q \cdot \mathrm{lcm}(a,b) so that a \mid r and b \mid r. If r > 0, then r < \mathrm{lcm}(a, b), a contradiction. Hence r = 0, yielding

\displaystyle a \cdot b = q \cdot \mathrm{lcm}(a,b) \quad \Rightarrow \quad q = \frac{a \cdot b}{\mathrm{lcm}(a,b)} = \frac{a}{\mathrm{lcm}(a,b)/b} = \frac{b}{\mathrm{lcm}(a,b)/a}.

We observe that q \mid a and q \mid b so that

q \leq \gcd(a,b)\quad \Rightarrow\quad a \cdot b \leq \gcd(a,b) \cdot \mathrm{lcm}(a,b).

Piecing the bounds,

\displaystyle a \cdot b = \gcd(a,b) \cdot \mathrm{lcm}(a,b).

Taking advantage of the identity \min\{x,y\} + \max\{x,y\} = x+y, using Problem 2,

\begin{aligned} \mathrm{lcm}(a,b) &= \frac{a \cdot b}{\gcd(a,b)} = \frac{\prod_{i=1}^n p_i^{\alpha_i} \cdot \prod_{i=1}^n p_i^{\beta_i}}{\prod_{i=1}^n p_i^{\min\{ \alpha_i, \beta_i\} }} \\ &= \prod_{i=1}^n p_i^{(\alpha_i + \beta_i) - \min\{ \alpha_i, \beta_i\} } = \prod_{i=1}^n p_i^{\max\{ \alpha_i, \beta_i\} }. \end{aligned}

—Joel Kindiak, 18 Sept 25, 1445H

,

Published by


Leave a comment