Polynomial Long Division

Definition 1. A function f : \mathbb R \to \mathbb R is called a polynomial if there exists real numbers a_0,a_1,\dots, a_n with a_n \geq 0 such that

\displaystyle f(x) = a_0 + a_1x + \cdots + a_nx^n \equiv \sum_{k=0}^n a_k x^k.

In this context, we define 0^0 := 1 for convenience. We leave it as an exercise that given polynomials f,g, the functions f + g and f \cdot g are polynomials too. Define the degree of a polynomial by \deg(0) := -\infty and \deg(f) := n.

Remark 1. All needful real-analytic definitions have been rigorously established in undergraduate real analysis.

Problem 1. For any polynomial f and real number c, prove that there exists a unique polynomial \tilde f such that f(x) - f(c) = (x-c) \cdot \tilde f(x).

(Click for Solution)

Solution. Suppose c = 0 for simplicity. Write f as

\displaystyle f(x) = \sum_{i=0}^n a_i x^i\quad \Rightarrow \quad f(0) = a_0.

Therefore,

\displaystyle f(x) - f(0) = \sum_{i=1}^n a_i x^i = x \cdot \underbrace{ \sum_{j=0}^{n-1} a_{j+1} x^j }_{\tilde f(x)} = x \cdot \tilde f(x).

Now assume general c. Define g := f(c + \cdot), which can be shown to be a polynomial with \deg(f) = \deg(g), since the binomial theorem yields

\begin{aligned} g(y) = f(c+y) &= \sum_{i=0}^n a_i (c+y)^i \\ &= \sum_{i=0}^n a_i \sum_{j=0}^i {i \choose j} c^{j-i} y^j \\ &= \sum_{i=0}^n \sum_{j=0}^i a_i {i \choose j} c^{j-i} y^j \\ &= \sum_{j=0}^n \underbrace{ \sum_{i=j}^n  a_i {i \choose j} c^{j-i} }_{b_j} y^j  = \sum_{j=0}^n b_j y^j ,\end{aligned}

and b_n = a_n \neq 0. Use the previous result to obtain a polynomial \tilde g such that g(y) = y \cdot \tilde g(y) so that

\displaystyle f(x) = g(c+(x-c)) = (x-c) \cdot \tilde g(x-c) =: (x-c) \cdot \tilde f(x),

where \tilde f := \tilde g(-c + \cdot) is also a polynomial.

Problem 2. Given polynomials f,g, prove that

\begin{aligned} \deg(f +g) &\leq \max\{\deg(f), \deg(g)\}, \\  \deg(f \cdot g) &= \deg(f) + \deg(g). \end{aligned}

(Click for Solution)

Solution. If f = 0, then \deg(f+g) = \deg(g) and \deg(f \cdot g) = \deg(0) = -\infty trivially. Suppose f,g are nonzero. Write

\displaystyle f(x) = \sum_{i=0}^m a_i x^i,\quad g(x) = \sum_{j=0}^n b_j x^j.

Define \alpha := \min\{m,n\} and \beta := \max\{m,n\}. If m < n, define a_i = 0 for \alpha < i \leq \beta. Define similarly in the case n < m. Then

\displaystyle f(x) = \sum_{i=0}^{\alpha} a_i x^i + \sum_{i=\alpha+1}^{\beta} a_i x^i,\quad g(x) = \sum_{j=0}^{\alpha} b_j x^j + \sum_{j=\alpha+1}^{\beta} b_j x^j.

It follows that

\displaystyle (f+g)(x) = f(x) +g(x) = \sum_{i=0}^{\alpha} (a_i + b_i) x^i + \sum_{i=\alpha+1}^{\beta} (a_i + b_i) x^i.

Therefore, \deg(f+g) \leq \beta = \max\{m,n\}. The result for the product holds similarly:

\begin{aligned} (f \cdot g)(x) = f(x) \cdot g(x) &= \left( \sum_{i=0}^m a_i x^i \right) \cdot \left(  \sum_{j=0}^n b_j x^j \right) \\ &= \sum_{i=0}^m \sum_{j=0}^n a_i b_j x^i x^j \\ &= \sum_{i=0}^m \sum_{k=i}^{n+i} a_i b_{k-i} x^{k} \\ &= \sum_{k=0}^{m+n} \underbrace{ \sum_{i=0}^k a_i b_{k-i} }_{c_k} x^{k} = \sum_{k=0}^{m+n} c_k x^{k}. \end{aligned}

Furthermore, c_{m+n} = a_m \cdot b_n \neq 0. Hence, \deg(f \cdot g) = m+n.

Problem 3. Prove that for nonzero polynomials f, g, there exists unique polynomials q, r with \deg(r) < \deg(f) such that

\displaystyle g = q \cdot f + r.

(Click for Solution)

Solution. We will first prove existence. Write

\displaystyle f(x) = a_m x^m + \tilde f(x) ,\quad g(x) = b_nx^n + \tilde g(x),

where \deg(\tilde f) < m and \deg(\tilde g) < n. If m = n, then

\displaystyle g = \underbrace{ \frac{b_n}{a_n} }_{q} \cdot f  + \underbrace{ \tilde g - \frac{b_n}{a_n} \cdot \tilde f }_{r},

where \deg(r) \leq \max\{\tilde f, \tilde g\} < \deg(f). If m > n, then g = 0 \cdot f + g, and we set q := 0, r := g, since

\deg(r) = \deg(g) = n < m = \deg(f)

works. We will prove the case m < n by strong induction on n. If n = 1, then m = 0 implies the constant function f = a_0, so that

\displaystyle g(x) = b_1 x + b_0 = a_0 \underbrace{\left(\frac{b_1}{a_0}\cdot x + \frac{b_0}{a_0}\right)}_{q(x)} = f(x) \cdot q(x) + r(x),

where we define r = 0. Then

\deg(r) = \deg(0) = -\infty < 0 = \deg(f)

works. Suppose the statement holds in the case n \leq k, and now assume n = k+1. Define l := n-m>0. We observe that

\displaystyle \underbrace{ \frac{b_n}{a_m} \cdot x^l }_{p(x)} \cdot f(x) = g(x) - \tilde g(x) + x^l \cdot \frac{b_n}{a_m} \cdot\tilde f(x).

Hence, \deg(g - p \cdot f) \leq \max\{\tilde f, \tilde g\} < \deg(g). If \deg(g - p \cdot f) \leq \deg(f), then we can find polynomials \tilde q, \tilde r with \deg(\tilde r) < \deg(f) such that

\displaystyle g - p \cdot f = \tilde q \cdot f + \tilde r\quad \Rightarrow \quad g = (p+\tilde q) \cdot f + \tilde r.

Otherwise, suppose \deg(f) < \deg(g - p \cdot f) \leq k. By the induction hypothesis, we can find polynomials \tilde q, \tilde r with \deg(\tilde r) < \deg(f) such that

\displaystyle g - p \cdot f = \tilde q \cdot f + \tilde r\quad \Rightarrow \quad g = (p+\tilde q) \cdot f + \tilde r.

In either case, setting q := p + \tilde q, r := \tilde r yields the desired result.

Finally, for uniqueness, suppose g = q_1 \cdot f + r_1 = q_2 \cdot f + r_2. Then

\displaystyle (q_1 - q_2) \cdot f = r_2 - r_1.

If q_1 \neq q_2, then q_1 - q_2 \neq 0, so that

\displaystyle m \leq \deg((q_1  + (-1) \cdot q_2) \cdot f) = \deg(r_2 + (-1) \cdot r_1) < m,

a contradiction. Hence, r_2 - r_1 = 0 \cdot f = 0, yielding r_1 = r_2.

—Joel Kindiak, 13 Sept 25, 2341H

,

Published by


Leave a comment