Some Normal Distribution Trivia

Problem 1. Let f be a continuously differentiable function. Evaluate \displaystyle \int x f'(x^2)\, \mathrm dx. Hence, evaluate

\displaystyle \int x e^{-x^2}\, \mathrm dx,\quad \int \frac{x}{1+x^4}\, \mathrm dx.

(Click for Solution)

Solution. Make the substitution u = x^2 \Rightarrow \mathrm du = 2x\, \mathrm dx so that

\begin{aligned} \int x f'(x^2)\, \mathrm dx &= \int x f'(u) \cdot \frac 1{2x}\, \mathrm du \\ &= \frac 12 \int f'(u)\, \mathrm du \\ &= \frac 12 f(u) + C \\ &= \frac 12 f(x^2) + C. \end{aligned}

Particularise the result to f(x) = -e^{-x} and f(x) = \tan^{-1}(x) to obtain

\displaystyle \int x e^{-x^2}\, \mathrm dx = -\frac 12 e^{-x^2} + C,\quad \int \frac{x}{1+x^4}\, \mathrm dx = \frac 12 \tan^{-1}(x) + C.

Assume the following integral identity

\displaystyle \left( \int_{-\infty}^{\infty} e^{-x^2}\, \mathrm dx \right)^2 = \int_0^{\infty} 2 \pi x e^{-x^2}\, \mathrm dx.

Problem 2. Evaluate \displaystyle \int_{-\infty}^{\infty} x^n e^{-x^2}\, \mathrm dx for n = 0, 1, 2.

(Click for Solution)

Solution. For n = 0, we use the given identity

\begin{aligned} \left( \int_{-\infty}^{\infty} e^{-x^2}\, \mathrm dx \right)^2 &= \int_0^{\infty} 2 \pi x e^{-x^2}\, \mathrm dx \\ &= 2\pi \int_0^{\infty} xe^{-x^2}\, \mathrm dx \\ &= 2\pi \left[-\frac 12 e^{-x^2}\right]_0^\infty \\ &= 2\pi \left(-\frac 12 \cdot 0 + \frac 12 \cdot 1\right) = \pi. \end{aligned}

Hence, \displaystyle \int_{-\infty}^{\infty} e^{-x^2}\, \mathrm dx = \sqrt{\pi}. For n = 1,

\begin{aligned}\int_0^{\infty} x e^{-x^2}\, \mathrm dx &= \left[-\frac 12 e^{-x^2}\right]_{-\infty}^\infty = -\frac 12 \cdot 0 + \frac 12 \cdot 0 = 0. \end{aligned}

For n = 2, we first integrate by parts to get

\begin{aligned} \int x^2 e^{-x^2}\, \mathrm dx &= \int x \cdot x e^{-x^2}\, \mathrm dx \\ &= \underbrace{ -\frac 12 e^{-x^2} }_{\mathrm I} \underbrace{ x }_{\mathrm S} - \int \underbrace{ -\frac 12 e^{-x^2} }_{\mathrm I} \underbrace{ 1 }_{\mathrm D}\, \mathrm dx \\ &= -\frac 12 xe^{-x^2} + \frac 12 \int e^{-x^2}\, \mathrm dx. \end{aligned}

Plugging in the limits,

\displaystyle \begin{aligned} \int_{-\infty}^{\infty} x^2 e^{-x^2}\, \mathrm dx &= \left[ -\frac 12 xe^{-x^2} \right]_{-\infty}^{\infty} + \frac 12 \int_{-\infty}^{\infty} e^{-x^2}\, \mathrm dx \\ &= (0 - 0) + \frac 12 \sqrt{\pi} = \frac 12 \sqrt{\pi}.\end{aligned}

Problem 3. Prove that for any C > 0 and n \in \mathbb N,

\displaystyle  \int_{-\infty}^{\infty} Cxe^{-x^2/n}\, \mathrm dx = 0.

Compute C, n so that

\begin{aligned} \int_{-\infty}^{\infty} Ce^{-x^2/n}\, \mathrm dx &= \int_{-\infty}^{\infty} Cx^2 e^{-x^2/n}\, \mathrm dx = 1. \end{aligned}

(Click for Solution)

Solution. Make the substitution x^2/n = t^2 \Rightarrow \mathrm dx = \sqrt n\, \mathrm dt so that

\begin{aligned} \int_{-\infty}^{\infty} Cxe^{-x^2/n}\, \mathrm dx &= Cn \int_{-\infty}^{\infty} t e^{-t^2}\, \mathrm dt = Cn \cdot 0 = 0 \end{aligned}

by Problem 2. Similarly,

\begin{aligned} 1 = \int_{-\infty}^{\infty} Ce^{-x^2/n}\, \mathrm dx  &= C \cdot \int_{-\infty}^{\infty} e^{-x^2/n}\, \mathrm dx \\ &= C\sqrt{n} \cdot \int_{-\infty}^{\infty} e^{-t^2}\, \mathrm dt \\ &= C\sqrt{n} \cdot \sqrt{\pi}\end{aligned}

so that C = 1/\sqrt{n \pi}. Furthermore,

\begin{aligned} 1 = \int_{-\infty}^{\infty} Cx^2 e^{-x^2/n}\, \mathrm dx &= Cn\sqrt n \int_{-\infty}^{\infty} t^2 e^{-t^2}\, \mathrm dt \\ &= Cn \sqrt n \cdot \frac 12 \sqrt{\pi}. \end{aligned}

Comparing results yields n = 2, implying C = 1/\sqrt{2\pi}.

Define \phi(t) := Ce^{-t^2/n}, where C,n are determined from Problem 3. It is obvious that \phi(-t) = \phi(t) for any t \in \mathbb R. Define

\displaystyle \Phi(z) := \int_{-\infty}^z \phi(t)\, \mathrm dt.

Here, \phi, \Phi are the probability density function and cumulative distribution function respectively of the standard normal distribution, commonly denoted \mathcal N(0, 1).

Problem 4. Prove the following properties:

  • For z \geq 0, \Phi(-z) = 1 - \Phi(z).
  • \Phi(0) = 1/2.
  • For any a < b, \displaystyle \int_a^b \phi(t)\, \mathrm dt = \Phi(b) - \Phi(a).
  • \displaystyle \lim_{T \to \pm \infty} \Phi(T) = 1/2 \pm 1/2.
(Click for Solution)

Solution. We observe that

\begin{aligned} \Phi(-z) = \int_{-\infty}^{-z} \phi(t)\, \mathrm dt &= \int_{-\infty}^{-z} \phi(-t)\, \mathrm dt \\ &= \int_{z}^{\infty} \phi(t)\, \mathrm dt \\ &= 1 - \int_{-\infty}^z \phi(t)\, \mathrm dt = 1 - \Phi(z). \end{aligned}

Setting z = 0, \Phi(0) = 1 - \Phi(0) yields \Phi(0) = 1/2. For the third result,

\begin{aligned} 1 = \int_{-\infty}^{\infty} \phi(t)\, \mathrm dt &= \int_{-\infty}^a  \phi(t)\, \mathrm dt + \int_a^b  \phi(t)\, \mathrm dt + \int_b^\infty  \phi(t)\, \mathrm dt \\ &= \Phi(a) + \int_a^b  \phi(t)\, \mathrm dt + (1- \Phi(b)) \\ &= 1 - (\Phi(b) - \Phi(a)) + \int_a^b  \phi(t)\, \mathrm dt. \end{aligned}

Algebra yields the desired result. For the final result, the case T \to \infty is immediate since

\displaystyle \lim_{T \to \infty} \Phi(T) = \lim_{T \to \infty} \int_{-\infty}^{T} \phi(t)\, \mathrm dt = \int_{-\infty}^{\infty} \phi(t)\, \mathrm dt = 1.

Furthermore,

\displaystyle \lim_{T \to -\infty} \Phi(T) = \lim_{T \to \infty} \Phi(-T) = 1 - \lim_{T \to \infty} \Phi(T) = 1 - 1 = 0.

Problem 5. For any \mu, \sigma \in \mathbb R with \sigma > 0, define \phi_{\mu, \sigma} by

\displaystyle \phi_{\mu, \sigma}(x) := K\phi\left( \frac{x-\mu}{\sigma} \right),

where K > 0 is a normalising constant i.e. \displaystyle \int_{-\infty}^{\infty} \phi_{\mu, \sigma}(x)\, \mathrm dx = 1.

Evaluate K. Furthermore, evaluate

\displaystyle \int_{-\infty}^{\infty} Kx\phi_{\mu, \sigma}(x)\, \mathrm dx , \quad  \int_{-\infty}^{\infty} Kx^2\phi_{\mu, \sigma}(x)\, \mathrm dx .

(Click for Solution)

Solution. Make the substitution t = (x-\mu)/\sigma \Rightarrow \mathrm dx = \sigma\, \mathrm dt so that \phi_{\mu,\sigma}(x) = K\phi(t), and

\begin{aligned} 1 = \int_{-\infty}^{\infty}  \phi_{\mu, \sigma}(x)\, \mathrm dx &= K\sigma \int_{-\infty}^{\infty} \phi(t)\, \mathrm dt = K \sigma \cdot 1 = K \sigma. \end{aligned}

Hence, K = 1/\sigma. Similarly,

\begin{aligned}\int_{-\infty}^{\infty} x\phi_{\mu, \sigma}(x)\, \mathrm dx &= \int_{-\infty}^{\infty} K\cdot (\mu + \sigma t)\cdot \phi(t) \cdot \sigma \, \mathrm dt \\ &= \mu \cdot K\sigma \int_{-\infty}^{\infty} \phi(t)\, \mathrm dt + K\sigma^2 \int_{-\infty}^{\infty} t \phi(t)\, \mathrm dt  \\ &= \mu \cdot 1 \cdot 1 + K \sigma^2 \cdot 0 = \mu. \end{aligned}

Likewise,

\begin{aligned} \int_{-\infty}^{\infty} x^2 \phi_{\mu, \sigma}(x)\, \mathrm dx &= \int_{-\infty}^{\infty} K \cdot (\mu + \sigma t)^2 \cdot \phi(t) \cdot \sigma\, \mathrm dt \\ &= \int_{-\infty}^{\infty} (\mu^2 + 2 \mu \sigma t + \sigma^2 t^2) \cdot \phi(t) \, \mathrm dt \\ &= \mu^2 \int_{-\infty}^{\infty} \phi(t)\, \mathrm dt + 2 \mu \sigma \mu^2 \int_{-\infty}^{\infty} t\phi(t)\, \mathrm dt + \sigma^2 \mu^2 \int_{-\infty}^{\infty} t^2 \phi(t)\, \mathrm dt \\ &= \mu^2 \cdot 1 + 2 \mu \sigma \cdot 0 + \sigma^2 \cdot 1 \\ &= \mu^2 + \sigma^2. \end{aligned}

Problem 6. Prove that \displaystyle \phi_{\mu, \sigma}(x) = \frac 1{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.

(Click for Solution)

Solution. By the previous problems,

\displaystyle \begin{aligned} \phi_{\mu, \sigma}(x) &= K \phi\left( \frac{x - \mu}{\sigma} \right) \\ &= KC e^{-\frac{(x-\mu)^2/\sigma^2}{n}} \\ &= \frac 1{\sigma} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2/\sigma^2}{2}} \\ &= \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}. \end{aligned}

Remark 1. Problem 6 gives us the standard formula for the probability distribution function of a normal distribution \mathcal N(\mu, \sigma^2) with mean \mu and variance \sigma^2:

\displaystyle \begin{aligned} \phi_{\mu, \sigma}(x) &= \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \end{aligned}

—Joel Kindiak, 20 May 25, 1710H

,

Published by


Leave a comment