Optimised Geometry

Big Idea

To maximise (or minimise) a quantity y\equiv y(x), we apply the zero derivative condition

\displaystyle \frac{\mathrm dy}{\mathrm dx} \equiv y'(x) = 0,

and check that the corresponding value x = c yields to a maximum (resp. minimum) via the second derivative test:

  • a local maximum is obtained at c when y''(c) <0,
  • a local minimum is obtained at c when y''(c) > 0.

Recall that we denote

\displaystyle y'' \equiv y''(x) := (y')'(x) \equiv \frac{\mathrm d}{\mathrm dx}(y'(x)) = \frac{\mathrm d}{\mathrm dx}\left(\frac{\mathrm dy}{\mathrm dx}\right) =: \frac{\mathrm d^2 y}{\mathrm dx^2}

for brevity.

Questions

Question 1. Evaluate the area of the largest rectangle contained inside the ellipse graphed below.

(Click for Solution)

Solution. Given x, y > 0, the base of the rectangle is 2x and its height is 2y, yielding a total area of A = 4xy. Differentiating with respect to x,

\displaystyle \frac{\mathrm dA}{\mathrm dx} = 4y + 4x \cdot \frac{\mathrm dy}{dx}.

On the other hand, given the ellipse \displaystyle \frac{x^2}{9} + \frac{y^2}{4} = 1, differentiate with respect to x on both sides to obtain

\displaystyle \frac{2x}{9} + \frac{2y}{4} \cdot \frac{\mathrm dy}{\mathrm dx} = 0 \quad \Rightarrow \quad \frac{\mathrm dy}{\mathrm dx} = -\frac{4x}{9y}.

Therefore,

\displaystyle \frac{\mathrm dA}{\mathrm dx} = 4y + 4x \cdot \frac{\mathrm dy}{dx} = 4y - \frac{16x^2}{9y}.

By the zero-derivative condition, if A is maximised, then \displaystyle \frac{\mathrm dA}{\mathrm dx} = 0:

\displaystyle 4y - \frac{16x^2}{9y} = 0 \quad \Rightarrow \quad y^2 = \frac{4}{9}x^2.

Plugging back into the equation of the ellipse,

\begin{aligned} \frac{x^2}{9} + \frac{1}{4} \cdot \frac{4}{9}x^2 &= 1 \\ x^2 &= 18\\ x &= \sqrt{18} \\ &= 3\sqrt{2}, \end{aligned}

since x > 0, yielding y = \frac 23 x = \frac 23 \cdot 3\sqrt 2 = 2\sqrt 2. Thus, the area of the corresponding rectangle is A = 4 \cdot 3\sqrt 2 \cdot 2\sqrt 2 = 12\, \text{units}^2.

To apply second derivative test, we differentiate A again:

\begin{aligned} \frac{\mathrm d^2 A}{\mathrm dx^2} &= 4 \cdot \frac{\mathrm dy}{\mathrm dx} - \frac{16 \cdot 2x \cdot 9y - 16x^2 \cdot \frac{\mathrm dy}{\mathrm dx}}{81y^2} \\ &= 4 \cdot 0 - \frac{16 \cdot 2x \cdot 9y - 16x^2 \cdot 0}{81y^2} \\ &= - \frac{32x }{9y} < 0,\end{aligned}

so A is indeed maximised when x = 3\sqrt 2 and y = 2\sqrt 2.

Question 2. The diagram below shows a movie theatre with a screen 9\, \text{m} tall, whose base is 4\, \text{m} above the ground.

The permissible viewing area is 50\, \text{m} long with an incline of up to 6\, \text{m}. Determine the position that a movie-goer P should sit in order to maximise his viewing angle \theta, justifying your answer.

(Click for Solution)

Solution. Let x denote the horizontal distance of the movie-goer from the screen. His height y is then determined using similar triangles:

\displaystyle \frac{y}{x} = \frac6{50} = \frac 3{25} \quad \Rightarrow \quad y = \frac{3}{25}x.

By observation,

\begin{aligned} \theta &= \tan^{-1} \left( \frac{13-y}{x} \right) - \tan^{-1} \left( \frac{4-y}{x} \right) \\ &= \tan^{-1} \left( \frac{13}{x} - \frac 3{25} \right) - \tan^{-1} \left( \frac{4}{x} - \frac 3{25} \right). \end{aligned}

We remark that if y > 4, then 4-y < 0 and the formula still works. Differentiating with respect to x,

\begin{aligned} \frac{\mathrm d\theta}{\mathrm dx} &= \frac{\mathrm d}{\mathrm dx}\tan^{-1} \left( \frac{13}{x} - \frac 3{25} \right) - \frac{\mathrm d}{\mathrm dx}\tan^{-1} \left( \frac{4}{x} - \frac 3{25} \right) \\ &= \frac{1}{1 + \left( \frac{13}{x} - \frac 3{25} \right)^2} \left( -\frac{13}{x^2} \right) - \frac{1}{1 + \left( \frac{4}{x} - \frac 3{25} \right)^2} \left( -\frac{4}{x^2} \right) \\ &= -\frac 1{x^2} \left( \frac{13}{1 + \left( \frac{13}{x} - \frac 3{25} \right)^2}  - \frac{4}{1 + \left( \frac{4}{x} - \frac 3{25} \right)^2} \right), \\ x^2 \frac{\mathrm d\theta}{\mathrm dx} &= \frac{4}{1 + \left( \frac{4}{x} - \frac 3{25} \right)^2} -\frac{13}{1 + \left( \frac{13}{x} - \frac 3{25} \right)^2}. \end{aligned}

By the zero-derivative condition, if \theta is maximised, then \frac{\mathrm d\theta}{\mathrm dx} = 0:

\begin{aligned}x^2 \cdot 0 &= \frac{4}{1 + \left( \frac{4}{x} - \frac 3{25} \right)^2} -\frac{13}{1 + \left( \frac{13}{x} - \frac 3{25} \right)^2}. \end{aligned}

We need to (painfully) solve this equation:

\begin{aligned} \frac{4}{1 + \left( \frac{4}{x} - \frac 3{25} \right)^2} &=\frac{13}{1 + \left( \frac{13}{x} - \frac 3{25} \right)^2} \\ 4 \cdot \left( 1 + \left( \frac{13}{x} - \frac 3{25} \right)^2 \right) &=13 \cdot \left( 1 + \left( \frac{4}{x} - \frac 3{25} \right)^2 \right) \\ 4 \cdot \left( 1 + \frac{169}{x^2} -\frac{78}{25x} + \frac{9}{625} \right) &=13 \cdot \left( 1 + \frac{16}{x^2} -\frac{24}{25x} + \frac{9}{625} \right) \\ 4 + \frac{676}{x^2} -\frac{312}{25x} + \frac{36}{625} &= 13 + \frac{208}{x^2} -\frac{312}{25x}+ \frac{117}{625} \\ \frac{468}{x^2} &= \frac{5706}{625} \\ x^2 &= \frac{16\, 250}{317} \\ x &= \sqrt{\frac{16\, 250}{317}} \approx 7.160\, \text{m}, \end{aligned}

since x > 0.

To apply second derivative test, we differentiate again:

\begin{aligned} 2x \frac{\mathrm d\theta}{\mathrm dx} + x^2 \frac{\mathrm d^2\theta}{\mathrm dx^2} &= \frac{\mathrm d}{\mathrm dx} \left( \frac{4}{1 + \left( \frac{4}{x} - \frac 3{25} \right)^2} \right) -\frac{\mathrm d}{\mathrm dx} \left( \frac{13}{1 + \left( \frac{13}{x} - \frac 3{25} \right)^2} \right) \\ &= -\frac {4 \cdot 2\left( \frac{4}{x} - \frac 3{25} \right) \cdot -\frac{4}{x^2}}{\left(1 + \left( \frac{4}{x} - \frac 3{25} \right)^2\right)^2} + \frac {13 \cdot 2\left( \frac{13}{x} - \frac 3{25} \right) \cdot -\frac{13}{x^2}}{\left(1 + \left( \frac{13}{x} - \frac 3{25} \right)^2\right)^2} \\ &= \frac 2{x^2} \cdot \left( \frac {16 \cdot \left( \frac{4}{x} - \frac 3{25} \right) }{\left(1 + \left( \frac{4}{x} - \frac 3{25} \right)^2\right)^2} - \frac {169 \cdot \left( \frac{13}{x} - \frac 3{25} \right) }{\left(1 + \left( \frac{13}{x} - \frac 3{25} \right)^2\right)^2} \right).\end{aligned}

When \displaystyle \frac{\mathrm d\theta}{\mathrm dx} = 0, \displaystyle \frac{4}{1 + \left( \frac{4}{x} - \frac 3{25} \right)^2} =\frac{13}{1 + \left( \frac{13}{x} - \frac 3{25} \right)^2}, so that

\begin{aligned} 2x \cdot 0 + x^2 \frac{\mathrm d^2\theta}{\mathrm dx^2} &= \frac 2{x^2} \cdot \left( \frac {16 \cdot \left( \frac{4}{x} - \frac 3{25} \right) }{\left(1 + \left( \frac{4}{x} - \frac 3{25} \right)^2\right)^2} - \frac {16 \cdot \left( \frac{13}{x} - \frac 3{25} \right) }{\left(1 + \left( \frac{4}{x} - \frac 3{25} \right)^2\right)^2} \right) \\ &= \frac 2{x^2} \cdot \frac {16}{\left(1 + \left( \frac{4}{x} - \frac 3{25} \right)^2\right)^2} \cdot \left( \left( \frac{4}{x} - \frac 3{25} \right) - \left( \frac{13}{x} - \frac 3{25} \right) \right) \\ &= \frac 2{x^2} \cdot \frac {16}{\left(1 + \left( \frac{4}{x} - \frac 3{25} \right)^2\right)^2} \cdot -\frac 9x < 0, \end{aligned}

so indeed \theta will attain its maximum at x = \sqrt{\frac{16\, 250}{317}}.

Question 3. Determine the smallest perimeter of a rectangle with area 1.

(Click for Solution)

Solution. Let x, y denote the base and height of the rectangle respectively. Since xy = 1 implies y = 1/x, the perimeter P of the rectangle is given by

\displaystyle P(x) = 2x + \frac 2x.

Differentiating twice,

\displaystyle P'(x) = 2 - \frac 2{x^2},\quad P''(x) = \frac 2{x^2} > 0.

Solving P'(x) = 0 yields x = 1 so that y = 1. Since P''(1) > 0 automatically, x = 1 yields a (local) minimum for P. Hence, the rectangle has a minimum perimeter of P(1) = 4, which corresponds to the rectangle being a square with base length 1.

Remark 1. The result remains true even if we consider rectangles of other areas; the rectangle with area A whose perimeter is minimum must be a square with side length \sqrt{A}.

Question 4. Given that 0 < x < 1, maximise x^2(1-x)^3.

(Click for Solution)

Solution. Define f(x) := x^2(1-x)^3. Differentiating twice,

\begin{aligned} f'(x) &= 2x \cdot (1-x)^3 + x^2 \cdot 3(1-x)^2 \cdot (-1) \\ &= 2x \cdot (1-x)^3 - x^2 \cdot 3(1-x)^2 \\ &= x \cdot (1-x)^2 \cdot (2-5x), \\ f''(x) &= (1-x)^2\cdot (2-5x) + x \cdot 2(1-x) \cdot(-1) \cdot (2-5x) \\ &\phantom{==} + x \cdot (1-x)^2 \cdot (-5) \\ &= (1-x)^2\cdot (2-5x) - 2x(1-x) \cdot (2-5x) - 5x \cdot (1-x)^2. \end{aligned}

Solving f'(x) = 0, since 0 < x < 1, 2-5x = 0 \Rightarrow x = 2/5. Substituting into f'',

f''(2/5) = 0 - 0 - 5 \cdot 2/5 \cdot (1-2/5)^2 < 0,

so that x = 2/5 yields a local (global) maximum. Hence, f has a maximum value of

\displaystyle \left(\frac 25 \right)^2 \left(1 - \frac 25 \right)^3 = \frac{2^2 \cdot 3^3}{5^5} = \frac{108}{3125} = 0.03456.

Remark 2. Using the same technique, we can prove that for any 0 < s < r and s < x < r,

\displaystyle 0 < (x-s)^m (r-x)^n \leq m^m n^n \cdot  \frac{(r-s)^{m+n}}{(m+n)^{m+n}}.

with equality at x = (rm+sn)/(m+n). Setting (s,r,m,n) = (0,1,2,3) yields Question 4.

Question 5. Given that x > 0, find the value of x that minimises \displaystyle 6x^3 + 7/x^5.

(Click for Solution)

Solution. Define f(x) := 6x^3 + 7/x^5 = 6x^3 + 7x^{-5}. Differentiating twice,

\begin{aligned} f'(x) &= 18x^2 - 35x^{-6}, \\ f''(x) &= 36x + 210x^{-7} > 0. \end{aligned}

Therefore, f is minimised when f'(x) = 0:

\displaystyle 18x^2 - 35x^{-6} = 0 \quad \Rightarrow \quad x^8 = \frac{35}{18} \quad \Rightarrow \quad x = \sqrt[8]{ \frac{ 35 }{ 18 } },

since x > 0.

Remark 3. In general, the value of x > 0 that minimises Ax^m + B/x^n is given by x^{m+n} = (Bn)/(Am).

—Joel Kindiak, 4 Sept 25, 1213H

Published by


Leave a comment