Controlling Convergence

Let f : [0, \infty) \to \mathbb R be continuous.

Problem 1. Suppose there exists \eta > 0 such that \displaystyle \lim_{T \to \infty} T^{1+\eta}f(T) = 0. Evaluate

\displaystyle \int_0^{\infty} tf'(t)\, \mathrm dt.

(Click for Solution)

Solution. Integrating by parts,

\displaystyle \int_0^T tf'(t)\, \mathrm dt = [tf(t)]_0^T - \int_0^T f(t)\, \mathrm dt = Tf(T) - \int_0^T f(t)\, \mathrm dt.

We claim that each term on the right-hand side converges as T \to \infty. For the first term, for T \geq 1,

\begin{aligned} 0 \leq \lim_{T \to \infty} | Tf(T) | &\leq \lim_{T \to \infty} | Tf(T) | \cdot |T|^\eta \\ &\leq \lim_{T \to \infty} | T^{1+\eta} f(T) | = 0. \end{aligned}

Therefore, Tf(T) \to 0 as T \to \infty. For the integral, for \epsilon := 1 > 0, there exists K > 0 such that

\displaystyle t > K \quad \Rightarrow \quad |t^{1+\eta}f(t)| < \epsilon = 1.

Setting N := \max\{2, K\} \in \mathbb N,

\begin{aligned} \int_0^T |f(t)|\, \mathrm dt &= \int_0^N |f(t)|\, \mathrm dt + \int_N^T |f(t)|\, \mathrm dt \\ &=\int_0^N |f(t)|\, \mathrm dt + \int_N^T |f(t)| \cdot \frac{ |t|^{1+\eta} }{ |t|^{1+\eta} }\, \mathrm dt \\ &= \int_0^N |f(t)|\, \mathrm dt + \int_N^T \frac{ |t^{1+\eta} f(t)| }{ t^{1+\eta} } \, \mathrm dt \\ &\leq \int_0^N |f(t)|\, \mathrm dt + \int_N^T \frac{ 1 }{ t^{1+\eta} } \, \mathrm dt \\ &\leq \int_0^N |f(t)|\, \mathrm dt + \sum_{k=N}^{\infty} \frac{ 1 }{ k^{1+\eta} } \\ &\leq \int_0^N |f(t)|\, \mathrm dt + \sum_{k=1}^{\infty} \frac{ 1 }{ k^{1+\eta} }. \end{aligned}

Taking T \to \infty, since the series converges as a p-series with p = 1 + \eta > 0, since f is continuous and thus integrable on [0, N], the integral on the left-hand side converges, and

\displaystyle \left| \int_0^\infty f(t)\, \mathrm dt \right| \leq \int_0^\infty |f(t)|\, \mathrm dt < \infty.

Therefore,

\displaystyle \int_0^{\infty} tf'(t)\, \mathrm dt = -\int_0^{\infty} f(t)\, \mathrm dt.

Problem 2. Suppose there exists M_1, M_2 > 0 such that M_1 \leq f \leq M_2. Given \eta \geq 0, determine the convergence of the series

\displaystyle S_\infty := \sum_{k=1}^\infty \frac{f(k)}{k^{\eta}}.

(Click for Solution)

Solution. Using the given estimate,

\displaystyle 0 < \frac{M_1}{k^{\eta}} \leq \frac{f(k)}{k^{\eta}} \leq \frac{M_2}{k^{\eta}}.

If \eta > 1, then \sum_{k=1}^\infty \frac{M_2}{k^{\eta}} converges. By the comparison test, S_\infty converges. If 0 \leq \eta \leq 1, then \sum_{k=1}^\infty \frac{M_1}{k^{\eta}} diverges. By the comparison test, S_\infty diverges.

Problem 3. Suppose there exists r > 0, r \neq 1, such that

\displaystyle \lim_{k \to \infty} \frac{g(k+1)}{g(k)} = r.

Given \eta > 0, determine the convergence of the series

\displaystyle T_\infty := \sum_{k=1}^\infty \frac{g(k)}{k^{\eta}}.

(Click for Solution)

Solution. Defining a_k := g(k)/k^{\eta}, applying the criterion in the ratio test,

\begin{aligned} \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| &= \lim_{k \to \infty} \left| \frac{g(k+1)}{(k+1)^{\eta}} \cdot \frac{k^{\eta}}{g(k)} \right| \\ &= \lim_{k \to \infty} \left( \left| \frac{g(k+1)}{g(k)} \right| \cdot \left( \frac{k}{k+1} \right)^{\eta} \right) \\ &= \left| \lim_{k \to \infty} \frac{g(k+1)}{g(k)} \right| \cdot \left( 1 - \lim_{k \to \infty} \frac{1}{k+1} \right)^{\eta} \\ &= |r| \cdot (1-0)^{\eta} = r. \end{aligned}

If 0 \leq r < 1, then T_\infty converges. If r > 1, then T_\infty diverges.

—Joel Kindiak, 17 Sept 25, 1551H

,

Published by


Leave a comment