Euler’s Handy Formula

Use Euler’s formula in this question without proof.

Theorem 1 (Euler’s Formula). For any t \in \mathbb R,

e^{it} = \cos(t) + i \sin(t).

Remark 1. Setting t = \pi yields Euler’s famous identity e^{i \pi} + 1 = 0.

Problem 1. Let T be a linear transformation. Prove that

\begin{aligned} T(\cos(t)) &= \frac 12 (T(e^{it}) + T(e^{-it})), \\ T(\sin(t)) &= \frac 1{2i} (T(e^{it}) - T(e^{-it})). \end{aligned}

(Click for Solution)

Solution. By Euler’s formula,

\begin{aligned} e^{it} &= \cos(t) + i \sin(t), \\ e^{-it} &= \cos(t) - i \sin(t). \end{aligned}

Adding (resp. subtracting) then dividing by 2 (resp. 2i) yields

\displaystyle \cos(t) = \frac{e^{it} + e^{-it}}{2},\quad \sin(t) = \frac{e^{it} + e^{-it}}{2i}.

The result follows since T is linear over \mathbb C.

Let p be any polynomial and \alpha \in \mathbb C be a constant. Define the linear transformation \displaystyle \frac 1{p(\mathcal D)} by

\displaystyle \frac 1{p(\mathcal D)}(e^{\alpha t} \cdot V(t)) := e^{\alpha t} \cdot \frac 1{p(\mathcal D + \alpha)} (V(t)).

Furthermore, define \displaystyle \frac 1{p(\mathcal D)}(1) := \frac 1{p(0)} if p(0) \neq 0 and \displaystyle \frac 1{\mathcal D}(1) := t.

Problem 2. For any polynomial F such that F(\alpha) \neq 0, evaluate \displaystyle \frac 1{F(\mathcal D)}(e^{\alpha x}).

(Click for Solution)

Solution. By the given result using V(x) = 1,

\displaystyle \frac 1{p(\mathcal D)}(e^{\alpha t} \cdot 1) = e^{\alpha t} \cdot \frac 1{p(\mathcal D + \alpha)} (1).

Defining the polynomial q by q(x) := p(x+\alpha), we have q(0) = p(\alpha) \neq 0, so that the right-hand side simplifies to

\displaystyle \frac 1{p(\mathcal D)}(e^{\alpha t}) = e^{\alpha t} \frac 1{q(\mathcal D)} (1) = e^{\alpha t} \cdot \frac 1{q(0)} = e^{\alpha t} \cdot\frac 1{p(\alpha)} = \frac 1{p(\alpha)} \cdot e^{\alpha t}.

Problem 3. For any polynomial F such that F(-k^2) \neq 0, evaluate \displaystyle \frac 1{F(\mathcal D^2)}(\cos kt) and \displaystyle \frac 1{F(\mathcal D^2)}(\sin kt).

(Click for Solution)

Solution. By Problem 1,

\begin{aligned} \frac 1{F(\mathcal D^2)}(\cos kt) &= \frac 12 \cdot \left( \frac 1{F(\mathcal D^2)} (e^{(ik)t}) + \frac 1{F(\mathcal D^2)} (e^{(-ik)t}) \right) \\ &= \frac 12 \cdot \left( \frac 1{G(\mathcal D)} (e^{(ik)t}) + \frac 1{G(\mathcal D)} (e^{(-ik)t}) \right) \end{aligned}

where we defined the polynomial G by G(x) := F(x^2). We observe that

G(\pm ik) = F((\pm ik)^2) = F((ik)^2) = F(i^2 \cdot k^2) = F(-k^2) \neq 0.

By Problem 2,

\begin{aligned} \frac 1{F(\mathcal D^2)}(\cos kt) &= \frac 12 \cdot \left( \frac 1{G(\mathcal D)} (e^{(ik)t}) + \frac 1{G(\mathcal D)} (e^{(-ik)t}) \right) \\ &= \frac 12 \cdot \left( \frac 1{G(ik)} (e^{(ik)t}) + \frac 1{G(-ik)} (e^{(-ik)t}) \right) \\ &= \frac 12 \cdot \left( \frac 1{F(-k^2)} (e^{(ik)t}) + \frac 1{F(-k^2)} (e^{(-ik)t}) \right) \\ &= \frac 1{F(-k^2)} \left(\frac {e^{i(kt)} + e^{-i(kt)}}{2} \right) = \frac 1{F(-k^2)} \cos(kt). \end{aligned}

In an analogous manner, \displaystyle \frac 1{F(D^2)}(\sin kt) = \frac 1{F(-k^2)} \sin(kt).

Problem 4. Evaluate \displaystyle \frac 1{\mathcal D^2 + k^2}(\cos kt) and \displaystyle \frac 1{\mathcal D^2 + k^2}(\sin kt).

(Click for Solution)

Solution. We will take advantage of the factorisation z^2 + k^2 = (z-ik)(z+ik). We observe that

\begin{aligned} \frac{1}{\mathcal D^2 + k^2}(e^{ikt}) &= \frac{1}{(\mathcal D - ik)(\mathcal D + ik)}(e^{ikt}) \\ &= \frac{1}{\mathcal D - ik}\left( \frac{1}{\mathcal D + ik} (e^{ikt}) \right) \\ &= \frac{1}{\mathcal D - ik} \left( \frac{1}{ik + ik} (e^{ikt}) \right) \\ &= \frac 1{2ik} \cdot \frac{1}{\mathcal D - ik} (e^{ikt}) \\ &= \frac 1{2ik} \cdot e^{ikt} \cdot \frac{1}{(\mathcal D + ik) - ik} (1) \\ &= \frac 1{2ik} \cdot e^{ikt} \cdot \frac{1}{\mathcal D}(1) = \frac 1{2ik} te^{ikt}. \end{aligned}

Similarly, \displaystyle \frac{1}{\mathcal D^2 + k^2}(e^{-ikt}) = -\frac 1{2ik} te^{-ikt}. By Problem 1,

\begin{aligned} \frac{1}{\mathcal D^2 + k^2}(\cos kt) &= \frac 12 \cdot \left(\frac{1}{\mathcal D^2 + k^2}(e^{ikt}) + \frac{1}{\mathcal D^2 + k^2}(e^{-ikt}) \right) \\ &= \frac 12 \cdot \left( \frac 1{2ik} te^{ikt} -\frac 1{2ik} te^{-ikt} \right) \\ &= \frac {t}{2k} \cdot \left( \frac {e^{ikt} - e^{-ikt}}{2i}  \right) = \frac {t \sin kt}{2k}.\end{aligned}

Analogously, \displaystyle \frac{1}{\mathcal D^2 + k^2}(\sin kt) = -\frac {t \cos kt}{2k}.

Problem 5. Suppose \mathcal L is a linear transformation such that for any constant \alpha \in \mathbb C,

\displaystyle \mathcal L \{e^{\alpha t} \} = \frac 1{s-\alpha }.

For any constant a \in \mathbb R, evaluate the real-valued functions \mathcal L \{\cos(at)\} and \mathcal L \{\sin(at)\}.

(Click for Solution)

Solution. Replacing \alpha with i a,

\begin{aligned}\mathcal L \{e^{i a t} \} = \frac 1{s-ia} &= \frac {s+ia}{(s-ia)(s+ia) } \\ &= \frac{s+ia}{s^2 + a^2} = \frac{s}{s^2 + a^2} + i \cdot \frac{a}{s^2 + a^2}. \end{aligned}

By Euler’s formula and the linearity of \mathcal L,

\mathcal L \{ e^{i a t} \} = \mathcal L\{ \cos(at) \} + i \cdot \mathcal L\{ \sin(at)\}

Hence,

\displaystyle \mathcal L\{ \cos(at) \} + i \cdot \mathcal L\{ \sin(at)\} = \frac{s}{s^2 + a^2} + i \cdot \frac{a}{s^2 + a^2}.

Comparing real and imaginary parts,

\displaystyle \mathcal L \{ \cos(at) \} = \frac{s}{s^2 + a^2},\quad \mathcal L\{ \sin(at) \} = \frac{a}{s^2 + a^2}.

Remark 2. One can explore the feasibility of these definitions for trigonometric functions defined using complex arguments:

\displaystyle \cos(z) = \frac{e^{iz} + e^{-iz}}{2},\quad \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}.

I haven’t done so, so perhaps that’s an open question.

—Joel Kindiak, 19 May 25, 2113H

,

Published by


Response

  1. The Inverse-D Recipe – KindiakMath

    […] a somewhat more elegant proof, of some of these identities, see this post. Finally, to see that this inverse- recipe really works, let’s revisit our tedious […]

    Like

Leave a reply to The Inverse-D Recipe – KindiakMath Cancel reply