Binomial Theorem Corollaries

Recall the binomial theorem, which states that for any n \in \mathbb N and x \in \mathbb R,

\displaystyle (1 + x)^n = \sum_{k=0}^n {n \choose k} x^k,

where we define 0^0 := 1 by convention.

Problem 1. Prove that for any a, b \in \mathbb R,

\displaystyle (a + b)^n = \sum_{k=0}^n {n \choose k} a^{n-k} b^k.

(Click for Solution)

Solution. If a = 0 then the result is trivial. If a > 0, then

\begin{aligned} (a+b)^n &= a^n \cdot \left(1 + \frac ba\right)^n = a^n \cdot \sum_{k=0}^n \left( \frac ba \right)^k \\ &= a^n \cdot \sum_{k=0}^n a^{-k} \cdot b^k = \sum_{k=0}^n a^{n-k} \cdot b^k. \end{aligned}

Problem 2. Evaluate the sums \displaystyle \sum_{k=0}^n {n \choose k} and \displaystyle \sum_{k=0}^n (-1)^k {n \choose k}.

(Click for Solution)

Solution. By Problem 1,

\displaystyle (1 + (\pm 1))^n = \sum_{k=0}^n (\pm 1)^k  {n \choose k}.

Therefore, \displaystyle \sum_{k=0}^n {n \choose k} = (1+1)^n = 2^n and \displaystyle \sum_{k=0}^n (-1)^k {n \choose k} = (1-1)^n = 0.

Problem 3. Prove that \displaystyle \sum_{k \in \mathbb N_0 :\, 2k \leq n} {n \choose 2k} = \sum_{k \in \mathbb N_0 :\, 2k+1 \leq n} {n \choose 2k+1}.

(Click for Solution)

Solution. By Problem 2,

\begin{aligned} 0=\sum_{k=0}^n (-1)^k {n \choose k} &= \sum_{k \in \mathbb N_0 :\, 2k \leq n} (-1)^{2k} {n \choose 2k} + \sum_{k \in \mathbb N_0 :\, 2k+1 \leq n} (-1)^{2k+1} {n \choose 2k+1} \\ &= \sum_{k \in \mathbb N_0 :\, 2k \leq n} {n \choose 2k} - \sum_{k \in \mathbb N_0 :\, 2k+1 \leq n} {n \choose 2k+1}. \end{aligned}

Therefore,

\displaystyle \sum_{k \in \mathbb N_0 :\, 2k \leq n} {n \choose 2k} = \sum_{k \in \mathbb N_0 :\, 2k+1 \leq n} {n \choose 2k+1}.

Problem 4. Evaluate the sums \displaystyle \sum_{k= 1}^n k {n \choose k} and \displaystyle \sum_{k= 1}^n k^2 {n \choose k}.

(Click for Solution)

Solution. Recall the vanilla binomial theorem

\displaystyle (1 + x)^n = \sum_{k=0}^n {n \choose k} x^k.

Differentiating on both sides twice,

\begin{aligned} n(1+x)^{n-1} &= \sum_{k=1}^{n} k {n \choose k} x^{k-1}, \\ n(n-1)(1+x)^{n-2} &= \sum_{k=2}^{n} k(k-1) {n \choose k} x^{k-2}. \end{aligned}

Setting x = 1 in the first identity,

\displaystyle \sum_{k=1}^{n} k {n \choose k} = n \cdot 2^{n-1}.

Setting x = 1 in the second identity,

\begin{aligned} n(n-1)\cdot 2^{n-2} &= \sum_{k=2}^{n} k(k-1) {n \choose k} =  \sum_{k=2}^{n} k^2 {n \choose k} - \sum_{k=2}^{n} k {n \choose k}. \end{aligned}

By algebruh, since \displaystyle 1^r {n \choose 1} = n for any r,

\displaystyle \sum_{k=1}^{n} k^2 {n \choose k} = n(n-1)\cdot 2^{n-2} + n \cdot 2^{n-1} = n \cdot 2^{n-1} \cdot (2n-1).

Problem 5. Evaluate \displaystyle \sum_{k= 0}^r {m \choose k} {n \choose r-k}.

(Click for Solution)

Solution. Using the binomial theorem on the product

\displaystyle (1+x)^{m+n} = (1+x)^m (1+x)^n,

we have

\begin{aligned} \sum_{r=0}^{m+n} {m+n \choose r} x^r &= \left(\sum_{k=0}^m {m \choose k} x^k\right) \cdot \left(\sum_{l=0}^n {n \choose l} x^l\right) \\ &= \sum_{k=0}^m \sum_{l=0}^n {m \choose k} {n \choose l} x^{k+l} \\ &= \sum_{r=0}^{m+n} \sum_{k+l=r} {m \choose k} {n \choose l} x^r \\ &= \sum_{r=0}^{m+n} \sum_{k=0}^r {m \choose k} {n \choose r-k} x^r. \end{aligned}

Comparing the coefficients of x^r,

\displaystyle \sum_{k= 0}^r {m \choose k} {n \choose r-k} = {m+n \choose r}.

This result is known as Vandermonde’s identity.

Problem 6. Evaluate \displaystyle \sum_{k= 0}^n {n \choose k}^2.

(Click for Solution)

Solution. Setting m = n and r = 2k in Problem 5,

\displaystyle \sum_{k= 0}^n {n \choose k}^2 = \sum_{k= 0}^r {n \choose k} {n \choose 2k-k} = {n + n \choose k} = {2n \choose k}.

—Joel Kindiak, 1 Aug 25, 1520H

,

Published by


Leave a comment